EDA Simulator Link™ 3
User’s Guide

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
EDA Simulator Link™ User’s Guide
© COPYRIGHT 2003-2010 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

August 2003
February 2004
June 2004
October 2004
December 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1 (Release 13SP1)
Updated for Version 1.1 (Release 13SP1)
Updated for Version 1.1.1 (Release 14)
Updated for Version 1.2 (Release 14SP1)
Updated for Version 1.3 (Release 14SP1+)
Updated for Version 1.3.1 (Release 14SP2)
Updated for Version 1.4 (Release 14SP3)
Updated for Version 2.0 (Release 2006a)
Updated for Version 2.1 (Release 2006b)
Updated for Version 2.2 (Release 2007a)
Updated for Version 2.3 (Release 2007b)
Updated for Version 2.4 (Release 2008a)
Updated for Version 2.5 (Release 2008b)
Updated for Version 2.6 (Release 2009a)
Updated for Version 3.0 (Release 2009b)
Updated for Version 3.1 (Release 2010a)

Cosimulating HDL with MATLAB and
Simulink

Simulating an HDL Component in a MATLAB
Test Bench Environment

1

Using MATLABasaTestBench 1-2
Overview to MATLAB Test Bench Functions 1-2
Workflow for Simulating an HDL Component with a

MATLAB Test Bench Function 1-4

Code HDL Modules for Verification Using MATLAB .. 1-7

Overview to Coding HDL Modules for Verification with

MATLAB .. e 1-7
Choosing an HDL Module Name for Use with a MATLAB

Test Bench 1-8
Specifying Port Direction Modes in HDL Module for Use

with Test Bench 1-8
Specifying Port Data Types in HDL Modules for Use with

Test Bench 1-8
Compiling and Elaborating the HDL Design for Use with

Test Bench 1-10
Sample VHDL Entity Definition 1-12

Code an EDA Simulator Link MATLAB Test Bench

Function e 1-14
Process for Coding MATLAB EDA Simulator Link
Functions e 1-14
Syntax of a Test Bench Function 1-15
Sample MATLAB Test Bench Function 1-15
Place Test Bench Function on MATLAB Search Path .. 1-21
Use MATLAB which Function to Find Test Bench 1-21
Add Test Bench Function to MATLAB Search Path 1-21

vi

Contents

Start Connection to HDL Simulator for Test Bench

SeSSION ... e e 1-22
Start MATLAB Server for Test Bench Session 1-22
Example of Starting MATLAB Server for Test Bench

N T=YST=3 (o) o N 1-23

Launch HDL Simulator for Use with MATLAB Test

Bench e e 1-24
Launching the HDL Simulator for Test Bench Session ... 1-24
Loading an HDL Design for Verification 1-24

Invoke matlabtb to Bind MATLAB Test Bench Function

Calls 1-26
Invoking the MATLAB Test Bench Command matlabtb .. 1-26
Binding the HDL Module Component to the MATLAB Test
Bench Function 1-29
Schedule Options for a Test Bench Session 1-31
About Scheduling Options for Test Bench Sessions 1-31
Scheduling Test Bench Session Using matlabtb
Arguments e 1-31
Scheduling Test Bench Functions Using the tnext
Parameter e 1-32
Run MATLAB Test Bench Simulation 1-35
Process for Running MATLAB Test Bench Cosimulation .. 1-35
Checking the MATLAB Server’s Link Status for Test Bench
Cosimulationiiiiiineeinnnnnnnnenn. 1-35
Running a Test Bench Cosimulation 1-36
Applying Stimuli to Test Bench Session with the HDL
Simulator force Command 1-41
Restarting a Test Bench Simulation 1-43
Stop Test Bench Simulation 1-44

Tutorial - Running a Sample ModelSim and MATLAB

Test Bench Session 1-45
Tutorial Overviewc.coueiiieeeennnnnnnnnn. 1-45
Setting Up Tutorial Files 1-46
Starting the MATLAB Server 1-46
Setting Up the ModelSim Simulator 1-47

Developing the VHDL Code
Compilingthe VHDL File
Developing the MATLAB Function
Loading the Simulation
Running the Simulation
Shutting Down the Simulation

Replacing an HDL Component with a MATLAB
Component Function

2

Overview to Using a MATLAB Function as a
Componentc.0iiiiiiiiiinnininnnn..
How MATLAB and the HDL Simulator Communicate

During a Component Sessioncoou...
Workflow for Creating a MATLAB Component Function for
Use with the HDL Simulator

Code HDL Modules for Visualization Using MATLAB ..
Overview to Coding HDL Modules for Visualization with
MATLAB ... e
Choosing an HDL Module Name for Use with a MATLAB
Component Function
Specifying Port Direction Modes in HDL Module for Use
with Component Functions
Specifying Port Data Types in HDL Modules for Use with
Component Functions,
Compiling and Elaborating the HDL Design for Use with
Component Functions i,

Create an EDA Simulator Link MATLAB Component
Function i
Overview to Coding an EDA Simulator Link Component

Function i
Syntax of a Component Function

Place Component Function on MATLAB Search
Path

2-2

2-2

2-4

2-7

2-7

vii

Use MATLAB which Function to Find Component
Function i 2-15
Add Component Function to MATLAB Search Path 2-15

Start Connection to HDL Simulator for Component

Function Session oo, 2-16
Start MATLAB Server for Component Function Session .. 2-16
Example of Starting MATLAB Server for Component

Function Sessionc.o i, 2-17

Launch HDL Simulator for Use with MATLAB

Component Sessioncciiiiiineennna.. 2-18
Launching the HDL Simulator for Component Session ... 2-18
Loading an HDL Design for Visualization 2-18

Invoke matlabcep to Bind MATLAB Component Function

Calls 2-20
Invoking the MATLAB Component Function Command

matlabep 2-20
Binding the HDL Module Component to the MATLAB

Component Function 2-23

Schedule Options for a Component Session 2-25

About Scheduling Options for Component Sessions 2-25
Scheduling Component Session Using matlabcp

Arguments e 2-25
Scheduling Component Functions Using the tnext

Parameter e 2-26

Run MATLAB Component Function Simulation 2-29

Process for Running MATLAB Component Function

Cosimulationc.coiiiiinieinnnnnnnnenn. 2-29
Checking the MATLAB Server’s Link Status for Component

Cosimulationc.coiiiiinieinnnnnnnnenn. 2-29
Running a Component Function Cosimulation 2-30
Applying Stimuli to Component Function with the HDL

Simulator force Command 2-35
Restarting a Component Simulation 2-37

Stop Component Simulation 2-38

Simulating an HDL Component in a Simulink
Test Bench Environment

3

Overview to Using Simulink as a Test Bench 3-2
Understanding How the HDL Simulator and Simulink
Software Communicate Using EDA Simulator Link For

Test Bench Simulation 3-2
HDL Cosimulation Block Features for Test Bench

Simulation e 3-5
Workflow for Simulating an HDL Component in a Simulink

Test Bench Environment 3-6

Create a Simulink Model for Test Bench Cosimulation

with the HDL Simulator 3-9
Creating Your Simulink Model 3-9
Running Test Bench Hardware Model in Simulink 3-9
Adding a Value Change Dump (VCD) File (Optional) 3-9

Code an HDL Component for Use with Simulink Test

Bench Applications 3-10
Overview to Coding HDL Components for Simulink Test

Bench Sessions i 3-10
Specifying Port Direction Modes in the HDL Component for

Test Bench Useciiiiiiiiiiiieennnn. 3-10
Specifying Port Data Types in the HDL Component for Test

Bench Uset 3-11
Compiling and Elaborating the HDL Design for Test Bench

USe ottt e 3-13

Launch HDL Simulator for Test Bench Cosimulation

with Simulink 3-14

Starting the HDL Simulator from MATLAB 3-14

Loading an Instance of an HDL Module for Test Bench
Cosimulationcoiiiiiiiiinnnnnnnnen.. 3-14

Add the HDL Cosimulation Block to the Simulink Test

Bench Model i 3-16
Insert HDL Cosimulation Block 3-16
Connect Block Ports, 3-17

ix

X

Contents

Define the HDL Cosimulation Block Interface for Test
Bench Cosimulation
Accessing the HDL Cosimulation Block Interface
Mapping HDL Signals to Block Ports
Specifying the Signal Data Types
Configuring the Simulink and HDL Simulator Timing

Relationship i,
Configuring the Communication Link in the HDL

Cosimulation Block
Specifying Pre- and Post-Simulation Tcl Commands with

HDL Cosimulation Block Parameters Dialog Box
Programmatically Controlling the Block Parameters

Run a Test Bench Cosimulation Session
Setting Simulink Software Configuration Parameters
Determining an Available Socket Port Number
Checking the Connection Status
Running and Testing a Test Bench Cosimulation Model ..
Avoiding Race Conditions in HDL Simulation with Test

Bench Cosimulation and the EDA Simulator Link HDL
Cosimulation Block

Tutorial — Verifying an HDL Model Using Simulink,
the HDL Simulator, and the EDA Simulator Link
Softwarec.iiiiiiiii e e
Tutorial OvVerviewc..iiiiiineeeennnnnnnn
Developing the VHDL Code
Compilingthe VHDL File
Creating the Simulink Model
Setting Up ModelSim for Use with Simulink
Loading Instances of the VHDL Entity for Cosimulation

with Simulink
Running the Simulation
Shutting Down the Simulation

Replacing an HDL Component with a Simulink
Algorithm

Overview to Component Simulation with Simulink ...
Understanding How the HDL Simulator and Simulink
Software Communicate Using EDA Simulator Link For
Component Simulation
HDL Cosimulation Block Features for Component
Simulation i e e e
Workflow for Using Simulink as HDL Component

Code an HDL Component for Use with Simulink
Applications
Overview to Coding HDL Modules for Simulink Component

Simulation i e e
Specifying Port Direction Modes in the HDL Module for
Component Simulation
Specifying Port Data Types in the HDL Module for
Component Simulation
Compiling and Elaborating the HDL Design for Component
Simulation i e e

Create Simulink Model for Component Cosimulation
with the HDL Simulator
Creating the Simulink Model for Component

Cosimulationoiiiiiieiinnnnnnnnenn.
Running and Testing a Component Hardware Model in

Simulink e e e
Adding a Value Change Dump (VCD) File to Component

Model (Optional)

Launch HDL Simulator for Component Cosimulation
with Simulink
Starting the HDL Simulator from MATLAB
Loading an Instance of an HDL Module for Component

Cosimulationoiiiiiieeinnnnnnnnenn.

Add the HDL Cosimulation Block to the Simulink
Component Model
Insert HDL Cosimulation Block

4-2

4-2

4-4
4-6

4-8

4-8

4-9

4-10

4-11

4-11

4-11

4-11

4-13
4-13

4-13

xi

xii

Contents

Connect Block Portscc .. 4-16

Define the HDL Cosimulation Block Interface for

Component Simulation 4-17
Accessing the HDL Cosimulation Block Interface 4-17
Mapping HDL Signals to Block Ports 4-18
Specifying the Signal Data Types 4-33
Configuring the Simulink and HDL Simulator Timing

Relationship, 4-33
Configuring the Communication Link in the HDL

Cosimulation Block 4-34
Specifying Pre- and Post-Simulation Tcl Commands with

HDL Cosimulation Block Parameters Dialog Box 4-37
Programmatically Controlling the Block Parameters 4-39

Run a Component Cosimulation Session 4-42

Setting Simulink Software Configuration Parameters 4-42
Determining an Available Socket Port Number 4-44
Checking the Connection Status 4-44
Running and Testing a Component Cosimulation Model .. 4-44

Avoiding Race Conditions in HDL Simulation with
Component Cosimulation and the EDA Simulator Link
HDL Cosimulation Block 4-48

Recording Simulink Signal State Transitions
for Post-Processing

5

Adding a Value Change Dump (VCD) File 5-2
Introduction to the EDA Simulator Link To VCD File
Block ... 5-2
Using the To VCD File Block 5-3
To VCD File Block Tutorial 5-6
Tutorial: OvVerviewiiiin e, 5-6
Tutorial: Instructionso nnenn. 5-6

Additional Deployment Options

6

Adding Questa ADMS Support
Adding Libraries for Questa ADMS Support
Linking MATLAB or Simulink Software to ModelSim in

Questa ADMS e e

Diagnosing and Customizing Your Setup for Use

with the HDL Simulator and EDA Simulator Link

Software i e

Overview to the EDA Simulator Link Configuration and
Diagnostic Scriptoiiii i e

Using the Configuration and Diagnostic Script for
UNIX/LANUX © v oottt et e e e e et e e iee e

Using the Configuration and Diagnostic Script with
Windows e

Performing Cross-Network Cosimulation
Why Perform Cross-Network Cosimulation?
Preparing for Cross-Network Cosimulation (MATLAB or

Simulink) e e
Performing Cross-Network Cosimulation with the HDL

Simulator and MATLAB
Performing Cross-Network Cosimulation with the HDL

Simulator and Simulink

Establishing EDA Simulator Link Machine
Configuration Requirements
Valid Configurations For Using the EDA Simulator Link

Software with MATLAB Applications
Valid Configurations For Using the EDA Simulator Link
Software with Simulink Software

Specifying TCP/IP Socket Communication
Communication Modes and Socket Ports
Choosing TCP/IP Socket Ports
Specifying TCP/IP Values,
TCP/IP ServiCes ... vvvvve ettt

Improving Simulation Speed

6-2
6-2

6-2

xiii

xiv

Contents

Obtaining Baseline Performance Numbers
Analyzing Simulation Performance
Cosimulating Frame-Based Signals with Simulink

Advanced Operational Topics

Avoiding Race Conditions in HDL Simulators

Overview to Avoiding Race Conditions
Potential Race Conditions in Simulink Link Sessions
Potential Race Conditions in MATLAB Link Sessions
Further Reading

Performing Data Type Conversions

Converting HDL Data to Send to MATLAB
Array Indexing Differences Between MATLAB and

HDL . e
Converting Data for Manipulation
Converting Data for Return to the HDL Simulator

Understanding the Representation of Simulation

Time .. e e e e
Overview to the Representation of Simulation Time
Defining the Simulink and HDL Simulator Timing
Relationship,
Setting the Timing Mode with EDA Simulator Link
Relative Timing Mode
Absolute Timing Mode
Timing Mode Usage Considerations
Setting HDL Cosimulation Block Port Sample Times

Driving Clocks, Resets, and Enables

Options for Driving Clocks, Resets, and Enables
Adding Signals Using Simulink Blocks
Creating Optional Clocks with the Clocks Pane of the HDL

Cosimulation Block
Driving Signals by Adding Force commands

Eliminating Block Simulation Latency

7-2
7-2
7-2
7-3
7-4

7-5
7-5

7-7
7-9
7-10

Applying Direct Feedthrough to Eliminate Block Simulation
Latency i 7-37

Defining EDA Simulator Link MATLAB Functions and

Function Parameters 7-42
MATLAB Function Syntax and Function Argument

Definitions0iiiiiiiii e 7-42
Oscfilter Function Example 7-44
Gaining Access to and Applying Port Information 7-45

Exporting Simulink Algorithms to
SystemC TLM 2.0 Components

Overview to TLM Component Generation

8

How TLM Component Generation Works 8-2
TLM Component Generationc.ovuennn. 8-2
How EDA Simulator Link Software Generates a TLM

Componentouiiiii e e 8-3

Setting TLM Component Generation Configuration

Parameters 8-7
User Workflow for TLM Component Generation 8-8
Basic Workflow Steps, 8-8
Select System Target File to Activate TLM Component
Generation Optionsouiviiennneennnnnn. 8-10
Select Features for Generated TLM Component 8-11
Select Options for Associated Test Bench 8-13
Specify Attributes for Generated makefile 8-15
Generate TLM Componentccvuuevnn... 8-16
Verify the Generated TLM Component 8-17

. 4%

xvi

Selecting Features for the Generated TLM

9

Component
Overview of Component Features 9-2
Memory Mappingc.oiiiiiiieennnnnnn 9-4
NoMemory Map ...ttt 9-4
Automatically Generated Memory Map with Single
Address ... e e 9-5
Automatically Generated Memory Map with Individual
Addresses ... oviiiii i e e 9-5
Command and Status Register 9-6
Interrupt 9-14
Test and Set Register 9-15
The Quantum00t iiiiirnnnnn. 9-16
Buffering 9-17
TLM Component Timing Values 9-18
TLM Component Naming and Packaging 9-19

Creating and Applying a Test Bench for the
Generated TLM Component

10

Contents

Testing TLM Componentsc.c...... 10-2
TLM Component Test Bench Overview 10-2
TLM Component Compilation 10-2
Automatic Verification of the Generated Component 10-3
Report Generationccuiiuiininennnnennn. 10-3
Working with Configurations 10-3

Considerations When Creating a TLM Component Test

Bench e e 10-4
TLM Component Test Bench Generation Options 10-6
Verbose Messagingc.uuiiiinnnnnnnn. 10-6
Run-Time Timing Mode, 10-6
Input and Output Buffer Triggering Modes 10-6
Verify TLM Componentoiiiiiuneeennnn. 10-7

Using TLM Components in a SystemC

Environment
111

TLM Component Compiler Options 11-2
About the TLM Component Compiler Options 11-2
SystemC Include Path 11-2
SystemC Library Path 11-2
TLM Include Path 11-3
Compile with Debug Flags 11-3
Using the Generated TLM Component Files 114
How to Identify Generated Files 114
Create Static Library with the TLM Component 11-5

Create Standalone Executable with the TLM Component
and Test Bench 11-6

Configuration Parameters for TLM Generator

Target
121

TLM Generation Pane 12-2
TLM Component Generation Overview 12-4
Memory Map Typeot 12-5
Auto-Generated Memory Map Type 12-6

Include a command and status register in the memory
MAD ¢ et ettt e et e e e e e 12-7

xXvii

xviii

Contents

Include a test and set register in the memory map 12-8
Create an interrupt request port on the generated TLM

COMPONENt .ottt et ittt ettt ettt tiee e 12-9
Enable payload buffering 12-10
Payload input bufferdepth 12-11
Payload output bufferdepth 12-12
Enable quantum for loosely-timed simulation 12-13
Quantum for loosely-timed components (ns) 12-14
Algorithm step function(ns), 12-15
Single write transfer or the first write transfer in a burst

transaction (IS) ... ii ittt i 12-16
Subsequent write transfers in a burst transaction (ns) ... 12-17
Single read transaction or the first read transfer in a burst

transaction (IS) ... ii ittt i 12-18
Subsequent read transfers in a burst transaction (inns) .. 12-19
User-tag for TLM component names 12-20

TLM Testbench Pane 12-21
TLM Component Testbench Pane Overview 12-22
Generate testbench, 12-23
Generate verbose messages during testbench execution .. 12-24
Run-time timing mode, 12-25
Input buffer triggeringmode 12-26
Output buffer triggeringmode 12-27

TLM Compilation Pane 12-28
TLM Component Compilation Overview 12-29
SystemC includepath 12-30
SystemC library path 12-31
TLMincludepath 12-32
Compile with debugflags 12-34

Creating and Managing Xilinx Projects for
FPGA Development

FPGA Project Generation Overview

13

EDA Simulator Link FPGA Project Generation

OVerviewW ... ittt e e 13-2
Introduction to EDA Simulator Link FPGA Project

Generationuitiuiiiiieeeeeeeeeeaan 13-2
Generated Project Files 13-3
Clock Modules0 i, 13-4
User Constraint Files (UCF) for Multicycle Paths 13-5
FPGA Hardware-in-the-Loop (HIL) 13-7
For More Informationccu ... 13-8

FPGA Project Development

14

Create New FPGA Project 14-2
Workflow for Creating a New FPGA Project 14-2
Create New or Open Existing Model 14-3
Set Up MATLAB to Use Xilinx ISE (New Project) 14-3
Set Up FPGA Project Configuration Parameters for New

Project 14-3
Set Project Generation Settings with EDA Link

Configuration Parameters 14-3
Generate FPGA Project 14-9

Add Generated Files to Existing FPGA Project 14-11

Workflow for Adding Generated Files with Existing FPGA
Project 14-11
Create New or Open Existing Model for Adding to
Project 14-13
Set Up MATLAB to Use Xilinx ISE (Add to Project) 14-13
Set Up FPGA Workflow Configuration Parameters (Add to
Project) 14-13

Open EDA Link FPGA Workflow Pane (Add to Project) .. 14-14

XX

Contents

Specify FPGA Project Settings with EDA Link Configuration
Parameters e 14-15
Add Generated Files to Project with Associate Project 14-15

Update Generated Files for Associated FPGA

Project 14-17
Workflow for Updating Generated Files 14-17
Open EDA Link FPGA Workflow Pane 14-19
Specify FPGA Project Settings with EDA Link Configuration
Parameters e 14-20
Update FPGA Projectcvviiiiiinnnn. 14-20
Remove Project Association 14-22
Workflow for Removing Project Association 14-22
When to Remove Project Association 14-22
Generate Tcl Script for Project Generation 14-23
When to Use Generated Tcl Scripts 14-23
Workflow for Tcl Script Generation 14-23

FPGA Hardware-in-the-Loop (HIL)

Introduction to FPGA Hardware-in-the-Loop (HIL) ... 15-2
Overview of FPGA Hardware-in-the-Loop (HIL)

Functionality 15-2
Simulink Emulation 15-3
Communication Channel 15-4
Downstream Workflow Automation 15-4
Design Considerations for FPGA HIL Project

Generationoiittt it e 15-4

Workflow for Generating FPGAHIL 15-5
Create Model for FPGAHIL 15-5
Set Up FPGA Project Configuration Parameters GUI 15-5
Specify Simulink® HDL Coder Configuration

Parameters i e 15-6
Specify FPGA HIL Configuration Parameters 15-6
Generate FPGA Project 15-7

Load Bitstream, 15-8
Run Simulation i, 15-8

Index

xxi

xxii Contents

Cosimulating HDL with MATLAB
and Simulink

® Chapter 1, “Simulating an HDL Component in a MATLAB Test
Bench Environment”

e Chapter 2, “Replacing an HDL Component with a MATLAB
Component Function”

® Chapter 3, “Simulating an HDL Component in a Simulink Test
Bench Environment”

e Chapter 4, “Replacing an HDL Component with a Simulink
Algorithm”

e Chapter 5, “Recording Simulink Signal State Transitions for
Post-Processing”

® Chapter 6, “Additional Deployment Options”
e Chapter 7, “Advanced Operational Topics”

Simulating an HDL

Component in a MATLAB
Test Bench Environment

e “Using MATLAB as a Test Bench” on page 1-2

e “Code HDL Modules for Verification Using MATLAB ” on page 1-7

¢ “Code an EDA Simulator Link MATLAB Test Bench Function” on page 1-14
¢ “Place Test Bench Function on MATLAB Search Path” on page 1-21

e “Start Connection to HDL Simulator for Test Bench Session” on page 1-22
¢ “Launch HDL Simulator for Use with MATLAB Test Bench” on page 1-24

¢ “Invoke matlabtb to Bind MATLAB Test Bench Function Calls” on page
1-26

e “Schedule Options for a Test Bench Session” on page 1-31
¢ “Run MATLAB Test Bench Simulation” on page 1-35
e “Stop Test Bench Simulation” on page 1-44

e “Tutorial — Running a Sample ModelSim and MATLAB Test Bench
Session” on page 1-45

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-2

Using MATLAB as a Test Bench

In this section...

“Overview to MATLAB Test Bench Functions” on page 1-2

“Workflow for Simulating an HDL Component with a MATLAB Test Bench
Function” on page 1-4

Overview to MATLAB Test Bench Functions

The EDA Simulator Link™ software provides a means for verifying HDL
modules within the MATLAB® environment. You do so by coding an HDL
model and a MATLAB function that can share data with the HDL model. This
chapter discusses the programming, interfacing, and scheduling conventions
for MATLAB test bench functions that communicate with the HDL simulator.

MATLAB test bench functions let you verify the performance of the HDL
model, or of components within the model. A test bench function drives
values onto signals connected to input ports of an HDL design under test and
receives signal values from the output ports of the module.

The following figure shows how a MATLAB function wraps around and
communicates with the HDL simulator during a test bench simulation session.

Using MATLAB as a Test Bench

MATLAB

MATLAB test bench M-Function

Stimulus

Response

HDL Simulator

IN

HDL Entity

Input
OouT I::I Arguments

When linked with MATLAB, the HDL simulator functions as the client, with
MATLAB as the server. The following figure shows a multiple-client scenario
connecting to the server at TCP/IP socket port 4449.

HDL Simulator
Client

HDL Simulator
Client

Link

Link

Port
4449

MATLAB

Server

The MATLAB server can service multiple simultaneous HDL simulator
sessions and HDL modules. However, you should follow recommended
guidelines to ensure the server can track the I/O associated with each
module and session. The MATLAB server, which you start with the supplied
MATLAB function hdldaemon, waits for connection requests from instances
of the HDL simulator running on the same or different computers. When

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

the server receives a request, it executes the specified MATLAB function
you have coded to perform tasks on behalf of a module in your HDL design.
Parameters that you specify when you start the server indicate whether the
server establishes shared memory or TCP/IP socket communication links.

Refer to “Establishing EDA Simulator Link Machine Configuration
Requirements” on page 6-26 for valid machine configurations.

Note The programming, interfacing, and scheduling conventions for test
bench functions and component functions are virtually identical (see Chapter
2, “Replacing an HDL Component with a MATLAB Component Function”).
For the most part, the same procedures apply to both types of functions.

Workflow for Simulating an HDL Component with a
MATLAB Test Bench Function

The following workflow shows the steps necessary to create a MATLAB test
bench session for cosimulation with the HDL simulator using EDA Simulator
Link.

Using MATLAB as a Test Bench

Create HDL module

Compile, elaborate, and

simulate model in HDL ™
simulator
Create MATLAB test
bench function -+

Place test bench function on
MATLAB search path

!

Start hdldaemon to provide
connectivity for HDL simulator

Launch HDL simulator for use
with MATLAB and load EDA
Simulator Link libraries

l

Bind HDL instance with test

bench function using
matlabth

!

Add scheduling or
communication options

Y

y
Set breakpoints for interactive
HDL debug (optional)

r

Run cosimulation from HDL
simulator

Testbench
run as
expected?

Disconnectsession

Needto
adjust
matlabth

parameters?

Yes Modify HDL
code and try
again

Needto
modify
function
code?

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

The workflow is as follows:

1 “Code HDL Modules for Verification Using MATLAB ” on page 1-7

2 “Code an EDA Simulator Link MATLAB Test Bench Function” on page 1-14
3 “Place Test Bench Function on MATLAB Search Path” on page 1-21

4 “Start Connection to HDL Simulator for Test Bench Session” on page 1-22
5 “Launch HDL Simulator for Use with MATLAB Test Bench” on page 1-24

6 “Invoke matlabtb to Bind MATLAB Test Bench Function Calls” on page
1-26

7 “Schedule Options for a Test Bench Session” on page 1-31
8 Set breakpoints for interactive HDL debug (optional).
9 “Run MATLAB Test Bench Simulation” on page 1-35

10 “Stop Test Bench Simulation” on page 1-44

1-6

Code HDL Modules for Verification Using MATLAB

Code HDL Modules for Verification Using MATLAB

In this section...

“Overview to Coding HDL Modules for Verification with MATLAB” on
page 1-7

“Choosing an HDL Module Name for Use with a MATLAB Test Bench”
on page 1-8

“Specifying Port Direction Modes in HDL Module for Use with Test Bench”
on page 1-8

“Specifying Port Data Types in HDL Modules for Use with Test Bench”
on page 1-8

“Compiling and Elaborating the HDL Design for Use with Test Bench”
on page 1-10

“Sample VHDL Entity Definition” on page 1-12

Overview to Coding HDL Modules for Verification
with MATLAB

The most basic element of communication in the EDA Simulator Link
interface is the HDL module. The interface passes all data between the HDL
simulator and MATLAB as port data. The EDA Simulator Link software
works with any existing HDL module. However, when you code an HDL
module that is targeted for MATLAB verification, you should consider its
name, the types of data to be shared between the two environments, and the
direction modes. The sections within this chapter cover these topics.

The process for coding HDL modules for MATLAB verification is as follows:

¢ Choose an HDL module name.

® Specify port direction modes in HDL components.
® Specify port data types in HDL components.

® Compile and debug the HDL model.

1-7

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-8

Choosing an HDL Module Name for Use with a
MATLAB Test Bench

Although not required, when naming the HDL module, consider choosing a
name that also can be used as a MATLAB function name. (Generally, naming
rules for VHDL or Verilog and MATLAB are compatible.) By default, EDA
Simulator Link software assumes that an HDL module and its simulation
function share the same name. See “Invoke matlabtb to Bind MATLAB Test
Bench Function Calls” on page 1-26.

For details on MATLAB function-naming guidelines, see “MATLAB
Programming Tips” on files and file names in the MATLAB documentation.

Specifying Port Direction Modes in HDL Module for
Use with Test Bench

In your module statement, you must specify each port with a direction mode
(input, output, or bidirectional). The following table defines these three modes.

Use VHDL Use Verilog | For Ports That...

Mode... Mode...

IN input Represent signals that can be driven by a
MATLAB function

ouT output Represent signal values that are passed to
a MATLAB function

INOUT inout Represent bidirectional signals that can
be driven by or pass values to a MATLAB
function

Specifying Port Data Types in HDL Modules for Use
with Test Bench

This section describes how to specify data types compatible with MATLAB
for ports in your HDL modules. For details on how the EDA Simulator Link
interface converts data types for the MATLAB environment, see “Performing
Data Type Conversions” on page 7-5.

Code HDL Modules for Verification Using MATLAB

Note If you use unsupported types, the EDA Simulator Link software issues
a warning and ignores the port at run time. For example, if you define your
interface with five ports, one of which is a VHDL access port, at run time,
then the interface displays a warning and your code sees only four ports.

Port Data Types for VHDL Entities

In your entity statement, you must define each port that you plan to test with
MATLAB with a VHDL data type that is supported by the EDA Simulator
Link software. The interface can convert scalar and array data of the
following VHDL types to comparable MATLAB types:

® STD_LOGIC, STD_ULOGIC, BIT, STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR,
and BIT_VECTOR

® INTEGER and NATURAL

® REAL

® TIME

¢ Enumerated types, including user-defined enumerated types and

CHARACTER

The interface also supports all subtypes and arrays of the preceding types.

Note The EDA Simulator Link software does not support VHDL extended
identifiers for the following components:

® Port and signal names used in cosimulation

¢ Enum literals when used as array indices of port and signal names used
in cosimulation

However, the software does support basic identifiers for VHDL.

1-9

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-10

Port Data Types for Verilog Modules

In your module definition, you must define each port that you plan to test
with MATLAB with a Verilog port data type that is supported by the EDA
Simulator Link software. The interface can convert data of the following
Verilog port types to comparable MATLAB types:

® reg

® integer

® wire

Note EDA Simulator Link software does not support Verilog escaped
identifiers for port and signal names used in cosimulation. However, it does
support simple identifiers for Verilog.

Compiling and Elaborating the HDL Design for Use
with Test Bench

After you create or edit your HDL source files, use the HDL simulator
compiler to compile and debug the code.

Compilation for ModelSim

You have the option of invoking the compiler from menus in the ModelSim
graphic interface or from the command line with the vcom command. The
following sequence of ModelSim commands creates and maps the design
library work and compiles the VHDL file modsimrand.vhd:

ModelSim> v1ib work
ModelSim> vmap work work
ModelSim> vcom modsimrand.vhd

The following sequence of ModelSim commands creates and maps the design
library work and compiles the Verilog file test.v:

ModelSim> vlib work
ModelSim> vmap work work
ModelSim> vlog test.v

Code HDL Modules for Verification Using MATLAB

Note You should provide read/write access to the signals that are connecting
to the MATLAB session for cosimulation. For higher performance, you

want to provide access only to those signals used in cosimulation. You can
check read/write access through the HDL simulator—see HDL simulator
documentation for details.

Compilation for Incisive

The Cadence Incisive simulator allows for 1-step and 3-step processes for HDL
compilation, elaboration, and simulation. The following Cadence Incisive
simulator command compiles the Verilog file test.v:

sh> ncvlog test.v

The following Cadence Incisive simulator command compiles and elaborates
the Verilog design test.v, and then loads it for simulation, in a single step:

sh> ncverilog +gui +access+rwc +linedebug test.v

The following sequence of Cadence Incisive simulator commands performs all
the same processes in multiple steps:

sh> ncvlog -linedebug test.v
sh> ncelab -access +rwc test
sh> ncsim test

Note You should provide read/write access to the signals that are connecting
to the MATLAB session for cosimulation. The previous example shows

how to provide read/write access to all signals in your design. For higher
performance, you want to provide access only to those signals used in
cosimulation. See the description of the +access flag to ncverilog and the
-access argument to ncelab for details.

1-11

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-12

Compilation for Discovery

Compilation of source files for use with MATLAB and Discovery is most
easily accomplished using the scripts automatically generated by the EDA
Simulator Link HDL simulator launch command launchDiscovery. See the
Examples section of the reference page for launchDiscovery.

Note You should provide read/write access to the signals that are connecting
to the MATLAB session for cosimulation. For higher performance, you want to
provide access only to those signals used in cosimulation. A tab file is included
in the simulation via the required launchDiscovery property "AccFile".

For more examples, see the EDA Simulator Link tutorials and demos. For
details on using the HDL compiler, see the simulator documentation.

Sample VHDL Entity Definition

This sample VHDL code fragment defines the entity decoder. By default, the
entity is associated with MATLAB test bench function decoder.

The keyword PORT marks the start of the entity’s port clause, which defines
two IN ports—isum and gsum—and three OUT ports—adj, dvalid, and odata.
The output ports drive signals to MATLAB function input ports for processing.
The input ports receive signals from the MATLAB function output ports.

Both input ports are defined as vectors consisting of five standard logic
values. The output port adj is also defined as a standard logic vector, but
consists of only two values. The output ports dvalid and odata are defined as
scalar standard logic ports. For information on how the EDA Simulator Link
interface converts data of standard logic scalar and array types for use in the
MATLAB environment, see “Performing Data Type Conversions” on page 7-5.

ENTITY decoder IS

PORT (
isum : IN std_logic_vector(4 DOWNTO O);
qsum : IN std_logic_vector(4 DOWNTO O);
adj : OUT std_logic_vector(1 DOWNTO O0);

dvalid : OUT std_logic;

Code HDL Modules for Verification Using MATLAB

odata : OUT std_logic);
END decoder ;

1-13

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-14

Code an EDA Simulator Link MATLAB Test Bench Function

In this section...

“Process for Coding MATLAB EDA Simulator Link Functions” on page 1-14
“Syntax of a Test Bench Function” on page 1-15
“Sample MATLAB Test Bench Function” on page 1-15

Process for Coding MATLAB EDA Simulator Link
Functions

Coding a MATLAB function that is to verify an HDL module or component
requires that you follow specific coding conventions. You must also
understand the data type conversions that occur, and program data type
conversions for operating on data and returning data to the HDL simulator.

To code a MATLAB function that is to verify an HDL module or component,
perform the following steps:

1 Learn the syntax for a MATLAB EDA Simulator Link test bench function
(see “Syntax of a Test Bench Function” on page 1-15).

2 Understand how EDA Simulator Link software converts data from the
HDL simulator for use in the MATLAB environment (see “Performing
Data Type Conversions” on page 7-5).

3 Choose a name for the MATLAB function (see “Binding the HDL Module
Component to the MATLAB Test Bench Function” on page 1-29).

4 Define expected parameters in the function definition line (see “MATLAB
Function Syntax and Function Argument Definitions” on page 7-42).

5 Determine the types of port data being passed into the function (see
“MATLAB Function Syntax and Function Argument Definitions” on page
7-42).

6 Extract and, if appropriate for the simulation, apply information received
in the portinfo structure (see “Gaining Access to and Applying Port
Information” on page 7-45).

Code an EDA Simulator Link™ MATLAB® Test Bench Function

7 Convert data for manipulation in the MATLAB environment, as necessary
(see “Converting HDL Data to Send to MATLAB” on page 7-5).

8 Convert data that needs to be returned to the HDL simulator (see
“Converting Data for Return to the HDL Simulator” on page 7-10).

Syntax of a Test Bench Function
The syntax of a MATLAB test bench function is

function [iport, tnext] = MyFunctionName (oport, tnow, portinfo)

See the “M ATLAB Function Syntax and Function Argument Definitions” on
page 7-42 for an explanation of each of the function arguments.

Sample MATLAB Test Bench Function

This section uses a sample MATLAB function to identify sections of a
MATLAB test bench function required by the EDA Simulator Link software.
You can see the full text of the code used in this sample in the section
MATLAB Function Example: manchester_decoder.m on page 1-20.

For ModelSim Users This example uses a VHDL entity and MATLAB
function code drawn from the decoder portion of the Manchester Receiver
demo. For the complete VHDL and function code listings, see the following
files:

matlabroot\toolbox\edalink\extensions\modelsim\modelsimdemos\vhdl\manchester\decoder.vhd

matlabroot\toolbox\edalink\extensions\modelsim\modelsimdemos\manchester_decoder.m

As the first step to coding a MATLAB test bench function, you must
understand how the data modeled in the VHDL entity maps to data in the
MATLAB environment. The VHDL entity decoder is defined as follows:

ENTITY decoder IS

PORT (
isum : IN std_logic_vector(4 DOWNTO 0);
qsum : IN std_logic_vector(4 DOWNTO 0);

1-15

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-16

adj : OUT std_logic_vector(1 DOWNTO 0);
dvalid : OUT std_logic;
odata : OUT std_logic
);
END decoder ;

The following discussion highlights key lines of code in the definition of the
manchester_decoder MATLAB function:

1 Specify the MATLAB function name and required parameters.

The following code is the function declaration of the manchester_decoder
MATLAB function.

function [iport,tnext] = manchester_decoder(oport,tnow,portinfo)

See “MATLAB Function Syntax and Function Argument Definitions” on
page 7-42.

The function declaration performs the following actions:

¢ Names the function. This declaration names the function
manchester_decoder, which differs from the entity name decoder.
Because the names differ, the function name must be specified explicitly
later when the entity is initialized for verification with the matlabtb or
matlabtbeval function. See “Binding the HDL Module Component to
the MATLAB Test Bench Function” on page 1-29.

¢ Defines required argument and return parameters. A MATLAB test
bench function must return two parameters, iport and tnext, and pass
three arguments, oport, tnow, and portinfo, and must appear in the
order shown. See “MATLAB Function Syntax and Function Argument
Definitions” on page 7-42.

The function outputs must be initialized to empty values, as in the
following code example:

tnext = [];
iport struct();

You should initialize the function outputs at the beginning of the
function, to follow recommended best practice.

Code an EDA Simulator Link™ MATLAB® Test Bench Function

The following figure shows the relationship between the entity’s ports
and the MATLAB function’s iport and oport parameters.

Input Signals Output Signals

i i —] - oport.adj (2)
:EZ::;JLTT] ((55))—> decoder.vhd L oport.dvalid(1)
' — oport.odata(1)

For more information on the required MATLAB test bench function
parameters, see “MATLAB Function Syntax and Function Argument
Definitions” on page 7-42.

2 Make note of the data types of ports defined for the entity being
simulated.

The EDA Simulator Link software converts HDL data types to comparable
MATLAB data types and vice versa. As you develop your MATLAB
function, you must know the types of the data that it receives from the
HDL simulator and needs to return to the HDL simulator.

The VHDL entity defined for this example consists of the following ports

VHDL Example Port Definitions

Port Direction Type... Converts
to/Requires
Conversion to...

isum IN STD_LOGIC_VECTOR (4 DOWNTO 0) A 5-bit column

or row vector of
characters where
each bit maps to
a standard logic
character literal.

qsum IN STD_LOGIC_VECTOR(4 DOWNTO 0) A 5-bit column
or row vector of
characters where
each bit maps to
a standard logic
character literal.

1-17

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

VHDL Example Port Definitions (Continued)

Port

Direction

Type...

Converts
to/Requires
Conversion to...

adj

ouT

STD_LOGIC_VECTOR(1 DOWNTO 0)

A 2-element
column vector of
characters. Each
character matches
a corresponding
character literal
that represents

a logic state and
maps to a single
bit.

dvalid

ouT

STD_LOGIC

A character that
matches the
character literal
representing the
logic state.

odata

ouT

STD_LOGIC

A character that
matches the
character literal
representing the
logic state.

1-18

3 Set up any required timing parameters.

tnext = tnow+1e-9;

For more information on interface data type conversions, see “Performing
Data Type Conversions” on page 7-5.

The tnext assignment statement sets up timing parameter tnext such
that the simulator calls back the MATLAB function every nanosecond.

4 Convert output port data to appropriate MATLAB data types for

processing.

Code an EDA Simulator Link™ MATLAB® Test Bench Function

The following code excerpt illustrates data type conversion of output port
data.

%% Compute one row and plot

isum = isum + 1;

adj (isum) = mvl2dec(oport.adj');

data(isum) = mvl2dec([oport.dvalid oport.odata]);

The two calls to mvl2dec convert the binary data that the MATLAB
function receives from the entity’s output ports, adj, dvalid, and odata to
unsigned decimal values that MATLAB can compute. The function converts
the 2-bit transposed vector oport.adj to a decimal value in the range 0 to
4 and oport.dvalid and oport.odata to the decimal value O or 1.

“Defining EDA Simulator Link MATLAB Functions and Function
Parameters” on page 7-42 provides a summary of the types of data
conversions to consider when coding simulation MATLAB functions.

Convert data to be returned to the HDL simulator.

The following code excerpt illustrates data type conversion of data to be
returned to the HDL simulator.

if isum == 17
iport.isum = dec2mvl(isum,5);
iport.qsum = dec2mvl(qsum,5);
else
iport.isum = dec2mvl(isum,5);
end

The three calls to dec2mvl convert the decimal values computed by
MATLAB to binary data that the MATLAB function can deposit to the
entity’s input ports, isum and gsum. In each case, the function converts a
decimal value to 5-element bit vector with each bit representing a character
that maps to a character literal representing a logic state.

1-19

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

“Converting Data for Return to the HDL Simulator” on page 7-10 provides
a summary of the types of data conversions to consider when returning
data to the HDL simulator.

MATLAB Function Example: manchester_decoder.m

1-20

Place Test Bench Function on MATLAB Search Path

Place Test Bench Function on MATLAB Search Path

In this section...
“Use MATLAB which Function to Find Test Bench” on page 1-21
“Add Test Bench Function to MATLAB Search Path” on page 1-21

Use MATLAB which Function to Find Test Bench

The MATLAB function that you are associating with an HDL component must
be on the MATLAB search path or reside in the current working folder (see
the MATLAB cd function). To verify whether the function is accessible, use
the MATLAB which function. The following call to which checks whether the
function MyVhd1lFunction is on the MATLAB search path, for example:

which MyVhdlFunction
/work/incisive/MySym/MyVhdlFunction.m

If the specified function is on the search path, which displays the complete
path to the function. If the function is not on the search path, which informs
you that the file was not found.

Add Test Bench Function to MATLAB Search Path

To add a MATLAB function to the MATLAB search path, open the Set
Path window by clicking File > Set Path, or use the addpath command.
Alternatively, for temporary access, you can change the MATLAB working
folder to a desired location with the cd command.

1-21

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-22

Start Connection to HDL Simulator for Test Bench Session

In this section...

“Start MATLAB Server for Test Bench Session” on page 1-22
“Example of Starting MATLAB Server for Test Bench Session” on page 1-23

Start MATLAB Server for Test Bench Session
Start the MATLAB server as follows:

1 Start MATLAB.

2 In the MATLAB Command Window, call the hdldaemon function with
property name/property value pairs that specify whether the EDA
Simulator Link software is to perform the following tasks:

e Use shared memory or TCP/IP socket communication

¢ Return time values in seconds or as 64-bit integers

See hdldaemon reference documentation for when and how to specify property
name/property value pairs and for more examples of using hd1ldaemon.

The communication mode that you specify (shared memory or TCP/IP sockets)
must match what you specify for the communication mode when you initialize
the HDL simulator for use with a MATLAB link session using the matlabtb
or matlabcp function. In addition, if you specify TCP/IP socket mode, the
socket port that you specify with hdldaemon and matlabtb or matlabcp must
match. For more information on modes of communication, see “Specifying
TCP/IP Socket Communication” on page 6-29.

The MATLAB server can service multiple simultaneous HDL simulator
modules and clients. However, your code must track the I/O associated with
each entity or client.

Start Connection to HDL Simulator for Test Bench Session

Note You cannot begin an EDA Simulator Link transaction between
MATLAB and the HDL simulator from MATLAB. The MATLAB server simply
responds to function call requests that it receives from the HDL simulator.

Example of Starting MATLAB Server for Test Bench
Session

The following command specifies using socket communication on port 4449
and a 64-bit time resolution format for the MATLAB function’s output ports.

hdldaemon('socket', 4449, 'time', 'int64')

1-23

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-24

Launch HDL Simulator for Use with MATLAB Test Bench

In this section...

“Launching the HDL Simulator for Test Bench Session” on page 1-24

“Loading an HDL Design for Verification” on page 1-24

Launching the HDL Simulator for Test Bench Session

Start the HDL simulator directly from MATLAB by calling the MATLAB
functionvsim, nclaunch, or launchDiscovery. See “Using EDA Simulator
Link with HDL Simulators ” for instructions on starting the HDL simulator
for use with EDA Simulator Link.

Loading an HDL Design for Verification

After you start the HDL simulator from MATLAB with a call to vsim or
nclaunch, load an instance of an HDL module for verification or visualization
with the function vsimmatlab or hdlsimmatlab. If you are using Discovery,
start the HDL simulator from MATLAB and load an instance of an HDL
module for verification with a call to launchDiscovery('PropertyType',
'"PropertyValue'...). At this point, you should have coded and compiled
your HDL model. Issue the function vsimmatlab or hdlsimmatlab for each
instance of an entity or module in your model that you want to cosimulate.
For example (for use with Incisive):

hdlsimmatlab work.osc_top

This command loads the EDA Simulator Link library, opens a simulation
workspace for osc_top, and displayd a series of messages in the HDL
simulator command window as the simulator loads the entity (see demo for
remaining code).

Another example is (for use with Discovery):

launchDiscovery (
'VerilogFiles','osc_top.v',
'TopLevel', 'osc_top',

'"RunMode ', 'GUI ',
'RunDir',projdir,...

Launch HDL Simulator for Use with MATLAB Test Bench

'LinkType', '"MATLAB',...
'PreSimTcl', preSimTclCmds,
'AccFile',tabaccessfile,...
'V1ogAnFlags', '"+v2k"'

);

This command loads osc_top in the HDL simulator and executes the
preSimTclCmds commands (see Oscillator demo for remaining code).

1-25

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-26

Invoke matiabtb to Bind MATLAB Test Bench Function Calls

In this section...

“Invoking the MATLAB Test Bench Command matlabtb” on page 1-26

“Binding the HDL Module Component to the MATLAB Test Bench
Function” on page 1-29

Invoking the MATLAB Test Bench Command matlabtb

You invoke matlabtb by issuing the command in the HDL simulator. See
the Examples section of the matlabtb reference page for several examples
of invoking matlabtb.

Be sure to follow the path specifications for MATLAB test bench sessions
when invoking matlabtb, as explained in “Specifying HDL Signal/Port and
Module Paths for MATLAB Test Bench Cosimulation” on page 1-26.

For instructions in issuing the matlabtb command, see “Running a Test
Bench Cosimulation” on page 1-36.

Specifying HDL Signal/Port and Module Paths for MATLAB Test
Bench Cosimulation

EDA Simulator Link software has specific requirements for specifying HDL
design hierarchy, the syntax of which is described in the following sections:
one for Verilog at the top level, and one for VHDL at the top level. Do not use
a file name hierarchy in place of the design hierarchy name.

The rules stated in this section apply to signal/port and module path
specifications for MATLAB link sessions. Other specifications may work but
the EDA Simulator Link software does not officially recognize nor support
them.

In the following example:

matlabtb u_osc_filter -mfunc oscfilter

u_osc_filter is the top-level component. If you specify a subcomponent, you
must follow valid module path specifications for MATLAB link sessions.

Invoke matlabtb to Bind MATLAB Test Bench Function Calls

Path Specifications for MATLAB Link Sessions with Verilog Top Level.

® The path specification must start with a top-level module name.

® The path specification can include "." or "/" path delimiters, but it cannot
include mixed delimiters.

® The leaf module or signal must match the HDL language of the top-level
module.

The following examples show valid signal and module path specifications:

top.port_or_sig
/top/sub/port_or_sig
top

top/sub
top.sub1.sub2

The following examples show invalid signal and module path specifications:

® top.sub/port_or_sig
Why this specification is invalid: You cannot use mixed delimiters.

® :sub:port_or_sig

:sub

Why this specification is invalid: When you use VHDL-specific delimiters
you limit the interoperability with paths when moving between HDL
simulators and between VHDL and Verilog.

Path Specifications for MATLAB Link Sessions with VHDL Top Level.

¢ The path specification can include the top-level module name, but you do
not have to include it.

® The path specification can include "." or "/" path delimiters, but it cannot
include mixed delimiters.

® The leaf module or signal must match the HDL language of the top-level
module.

1-27

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-28

Examples for ModelSim and Incisive Users

The following examples show valid signal and module path specifications:

top.port_or_sig
/sub/port_or_sig
top

top/sub
top.sub1.sub2

The following examples show invalid signal and module path specifications:

® top.sub/port_or_sig
Why this specification is invalid: You cannot use mixed delimiters.

® :sub:port_or_sig

:sub

Why this specification is invalid: When you use VHDL-specific delimiters
you limit the interoperability with paths when moving between HDL
simulators and between VHDL and Verilog.

Examples for Discovery Users

The following examples show valid signal and module path specifications:

top.port_or_sig
top

top/sub
top.sub1.sub2

The following examples show invalid signal and module path specifications:

® top.sub/port_or_sig
Why this specification is invalid: You cannot use mixed delimiters.
® /sub/port_or_sig

Why this specification is invalid: You have not specified the top level.

Invoke matlabtb to Bind MATLAB Test Bench Function Calls

® :sub:port_or_sig

:sub

Why this specification is invalid: When you use VHDL-specific delimiters
you limit the interoperability with paths when moving between HDL
simulators and between VHDL and Verilog.

Binding the HDL Module Component to the MATLAB
Test Bench Function

By default, the EDA Simulator Link software assumes that the name for a
MATLAB function matches the name of the HDL module that the function
verifies. When you create a test bench or component function that has a
different name than the design under test, you must associate the design
with the MATLAB function using the -mfunc argument to matlabtb. This
argument associates the HDL module instance to a MATLAB function that
has a different name from the HDL instance.

For more information on the -mfunc argument and for a full list of matlabtb
parameters, see the matlabtb function reference.

For details on MATLAB function naming guidelines, see "MATLAB
Programming Tips" on files and file names in the MATLAB documentation.

Example of Binding Test Bench and Component Function Calls

In this first example, you form an association between the inverter_vl
component and the MATLAB test bench function inverter_tb by invoking the
function matlabtb with the -mfunc argument when you set up the simulation.

matlabtb inverter_vl -mfunc inverter_tb

The matlabtb command instructs the HDL simulator to call back the
inverter_tb function when inverter_vl executes in the simulation.

In this second example, you bind the model osc_top.u_osc_filter to the
component function oscfilter:

matlabcp osc_top.u_osc_filter -mfunc oscfilter

1-29

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

When the HDL simulator calls the oscfilter callback, the function knows to
operate on the model osc_top.u_osc_filter.

1-30

Schedule Options for a Test Bench Session

Schedule Options for a Test Bench Session

In this section...

“About Scheduling Options for Test Bench Sessions” on page 1-31
“Scheduling Test Bench Session Using matlabtb Arguments” on page 1-31

“Scheduling Test Bench Functions Using the tnext Parameter” on page 1-32

About Scheduling Options for Test Bench Sessions

There are two ways to schedule the invocation of a MATLAB function:

¢ Using the arguments to the EDA Simulator Link function matlabtb or
matlabcp

¢ Inside the MATLAB function using the tnext parameter

The two types of scheduling are not mutually exclusive. You can combine
the matlabtb or matlabcp timing arguments and the tnext parameter of a
MATLAB function to schedule test bench or component session callbacks.

Scheduling Test Bench Session Using matlabtb
Arguments

By default, the EDA Simulator Link software invokes a MATLAB test
bench or component function once (at the time that you make the call to
matlabtb/matlabcp). If you want to apply more control, and execute the
MATLAB function more than once, use the command scheduling options.
With these options, you can specify when and how often the EDA Simulator
Link software invokes the relevant MATLAB function. If necessary, modify
the function or specify timing arguments when you begin a MATLAB test
bench or component function session with the matlabtb/matlabcp function.

You can schedule a MATLAB test bench or component function to execute
using the command arguments under any of the following conditions:

® Discrete time values—Based on time specifications that can also include
repeat intervals and a stop time

¢ Rising edge—When a specified signal experiences a rising edge

1-31

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-32

= VHDL: Rising edge is {0 or L} to {1 or H}.
= Verilog: Rising edge is the transition from O to x, z, or 1, and from x
or z to 1.
¢ Falling edge—When a specified signal experiences a falling edge
= VHDL: Falling edge is {1 or H} to {0 or L}.
= Verilog: Falling edge is the transition from 1 to x, z, or 0, and from

x or z to O.

* Signal state change—When a specified signal changes state, based on a
list using the -sensitivity argument to matlabtb.

Scheduling Test Bench Functions Using the tnext
Parameter

You can control the callback timing of a MATLAB function by using that
function’s tnext parameter. This parameter passes a time value to the HDL
simulator, and the value gets added to the simulation schedule for that
function. If the function returns a null value ([]) , the software does not add
any new entries to the schedule.

You can set the value of tnext to a value of type double or int64. Specify
double to express the callback time in seconds. For example, to schedule
a callback in 1 ns, specify::

tnext = 1e-9

Specify int64 to convert to an integer multiple of the current HDL simulator
time resolution limit. For example: if the HDL simulator time precision is 1
ns, to schedule a callback at 100 ns, specify:

tnext=1int64(100)

Schedule Options for a Test Bench Session

Note The tnext parameter represents time from the start of the simulation.
Therefore, tnext must always be greater than tnow. If it is less, the software
does not schedule a callback.

For more information on tnext and the function prototype, see “Defining EDA
Simulator Link MATLAB Functions and Function Parameters” on page 7-42.

Examples of Scheduling with thext

In this first example, each time the HDL simulator calls the test bench
function (via EDA Simulator Link), tnext schedules the next callback to the
MATLAB function for 1 ns later, relative to the current simulation time:

tnext [1;

tnext = tnow+1e-9;

Using tnext you can dynamically decide the callback scheduling based on
criteria specific to the operation of the test bench. For example, you can decide
to stop scheduling callbacks when a data signal has a certain value:

if gsum == 17,
qsum = 0;
disp('done');
tnext = []; % suspend callbacks
testisdone = 1;
return;
end

This next example demonstrates scheduling a component session using
tnext. In the Oscillator demo, the oscfilter function calculates a time interval
at which the HDL simulator calls the callbacks. The component function
calculates this interval on the first call to oscfilter and stores the result in the
variable fastestrate. The variable fastestrate represents the sample period of
the fastest oversampling rate supported by the filter. The function derives
this rate from a base sampling period of 80 ns.

1-33

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

The following assignment statement sets the timing parameter tnext. This
parameter schedules the next callback to the MATLAB component function,
relative to the current simulation time (tnow).

tnext = tnow + fastestrate;

The function returns a new value for tnext each time the HDL simulator
calls the function.

1-34

Run MATLAB Test Bench Simulation

Run MATLAB Test Bench Simulation

In this section...
“Process for Running MATLAB Test Bench Cosimulation” on page 1-35

“Checking the MATLAB Server’s Link Status for Test Bench Cosimulation”
on page 1-35

“Running a Test Bench Cosimulation” on page 1-36

“Applying Stimuli to Test Bench Session with the HDL Simulator force
Command” on page 1-41

“Restarting a Test Bench Simulation” on page 1-43

Process for Running MATLAB Test Bench Cosimulation

To start and control the execution of a simulation in the MATLAB
environment, perform the following steps:

1 “Checking the MATLAB Server’s Link Status for Test Bench Cosimulation”
on page 1-35

2 Run and monitor the cosimulation session.
3 Apply stimuli (optional).

4 Restart simulator during a cosimulation session (if necessary).

Checking the MATLAB Server’s Link Status for Test

Bench Cosimulation

The first step to starting an HDL simulator and MATLAB test bench or
component function session is to check the MATLAB server’s link status. Is
the server running? If the server is running, what mode of communication
and, if applicable, what TCP/IP socket port is the server using for its links?
You can retrieve this information by using the MATLAB function hdldaemon

with the 'status' option. For example:

hdldaemon('status')

1-35

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

The function displays a message that indicates whether the server is running
and, if it i1s running, the number of connections it is handling. For example:

HDLDaemon socket server is running on port 4449 with 0 connections

If the server is not running, the message reads

HDLDaemon is NOT running

See the Options: Inputs section in the hd1ldaemon reference documentation
for information on determining the mode of communication and the TCP/IP
socket in use.

Running a Test Bench Cosimulation

You can run a cosimulation session using both the MATLAB and HDL
simulator GUIs (typical) or, to reduce memory demand, you can run the
cosimulation using the command line interface (CLI) or in batch mode.

¢ “Cosimulation with MATLAB Using the HDL Simulator GUI” on page 1-36

¢ “Cosimulation with MATLAB Using the Command Line Interface (CLI)”
on page 1-38

¢ “Cosimulation with MATLAB Using Batch Mode” on page 1-40

Cosimulation with MATLAB Using the HDL Simulator GUI

These steps describe a typical sequence for running a simulation interactively
from the main HDL simulator window:

1 Set breakpoints in the HDL and MATLAB code to verify and analyze
simulation progress and correctness.

How you set breakpoints in the HDL simulator will vary depending on
what simulator application you are using.

In MATLAB, there are several ways you can set breakpoints; for example,
by using the Set/Clear Breakpoint button on the toolbar.

2 Issue matlabtb command at the HDL simulator prompt.

Run MATLAB Test Bench Simulation

When you begin a specific test bench or component session, you specify
parameters that identify the following information:

¢ The mode and, if appropriate, TCP/IP data necessary for connecting to a
MATLAB server (see matlabtb reference)

¢ The MATLAB function that is associated with and executes on behalf
of the HDL instance (see “Binding the HDL Module Component to the
MATLAB Test Bench Function” on page 1-29)

¢ Timing specifications and other control data that specifies when the
module’s MATLAB function is to be called (see “Schedule Options for a
Test Bench Session” on page 1-31)

For example:

hdlsim> matlabtb osc_top -sensitivity /osc_top/sine_out
-socket 4448 -mfunc hosctb

3 Start the simulation by entering the HDL simulator run command.

The run command offers a variety of options for applying control over how
a simulation runs (refer to your HDL simulator documentation for details).
For example, you can specify that a simulation run for several time steps.

The following command instructs the HDL simulator to run the loaded
simulation for 50000 time steps:

run 50000

4 Step through the simulation and examine values.

How you step through the simulation in the HDL simulator will vary
depending on what simulator application you are using.

In MATLAB, there are several ways you can step through code; for
example, by clicking the Step toolbar button.

5 When you block execution of the MATLAB function, the HDL simulator
also blocks and remains blocked until you clear all breakpoints in the
function’s code.

6 Resume the simulation, as needed.

1-37

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-38

How you resume the simulation in the HDL simulator will vary depending
on what simulator application you are using.

In MATLAB, there are several ways you can resume the simulation; for
example, by clicking the Continue toolbar button.

The following HDL simulator command resumes a simulation:

run -continue

For more information on HDL simulator and MATLAB debugging features,
see the appropriate HDL simulator documentation and MATLAB online help
or documentation.

Cosimulation with MATLAB Using the Command Line Interface
(CLI)

Running your cosimulation session using the command-line interface allows
you to interact with the HDL simulator during cosimulation, which can be
helpful for debugging.

To use the CLI, specify "CLI" as the property value for the run mode
parameter of the EDA Simulator Link HDL simulator launch command.

The Tcl command you build to pass to the HDL simulator launch command
must contain the run command or no cosimulation will take place.

Caution Close the terminal window by entering "quit -f" at the command
prompt. Do not close the terminal window by clicking the "X" in the upper
right-hand corner. This causes a memory-type error to be issued from the
system. This is not a bug with EDA Simulator Link but just the way the
HDL simulator behaves in this context.

You can type CTRL+C to interrupt and terminate the simulation in the HDL
simulator but this action also causes the memory-type error to be displayed.

Run MATLAB Test Bench Simulation

Specifying CLI mode with nclaunch (for use with Cadence Incisive)

Issue the nclaunch command with "CLI" as the runmode property value, as
follows (example entered into the MATLAB editor):

tclemd = { ['cd ',projdir],...
['exec ncvlog ' srcfile],...
'exec ncelab -access +wc lowpass_filter',...
['hdlsimmatlab -gui lowpass_filter ',

-input "{@matlabtb lowpass_filter 10ns -repeat 10ns -mfunc filter_tb_incisive}"',...

-input "{@force lowpass_filter.clk_enable 1 -after Ons}"',...
' -input "{@force lowpass_filter.reset 1 -after Ons 0 -after 22ns}"',...

-input "{@force lowpass_filter.clk 1 -after Ons O -after 5ns -repeat 10ns}"',...
-input "{@deposit lowpass_filter.filter_in 0}"',...

1}
nclaunch('tclstart',tclcmd, 'runmode', 'CLI');

Specifying CLI mode with vsim (for use with Mentor Graphics
ModelSim)

Issue the vsim command with "CLI" as the runmode property value, as follows
(example entered into the MATLAB editor):

tclemd = { ['cd ',unixprojdir],...
'vlib work',... %create library (if necessary)
'force /osc_top/clk_enable 1 0',...
'force /osc_top/reset 1 0, 0 120 ns',...
'force /osc_top/clk 1 0 ns, 0 40 ns -r 80ns',...
b

vsim('tclstart',tclcmd, 'runmode', 'CLI');

Specifying CLI mode with launchDiscovery (for use with Synopsys
Discovery)

Issue the launchDiscovery command with "CLI" as the RunMode parameter,
as follows:

preSimTclCmds = { ...
'matlabtb lowpass_filter 10ns -repeat 10ns -mfunc lpfiltertestbench',...

1-39

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-40

'force lowpass_filter.clk_enable 1 Ons',...
'force lowpass_filter.reset 1 Ons, 0 22ns',...
'force lowpass_filter.clk 1 Ons, 0 5ns -repeat 10ns',...
'force lowpass_filter.filter_in 0 -deposit'...
b

launchDiscovery(...
'VerilogFiles',srcfile, ...
'TopLevel', 'lowpass_filter', ...
'RunMode', 'CLI', ...
'RunDir',projdir,...
'LinkType', 'MATLAB', ...
'PreSimTcl', preSimTclCmds, ...
'AccFile',tabaccessfile,...
'VlogAnFlags', '"+v2k"' ..

Cosimulation with MATLAB Using Batch Mode

Running your cosimulation session in batch mode allows you to keep the
process in the background, reducing demand on memory by disengaging the
GUL

To use the batch mode, specify "Batch" as the property value for the run mode
parameter of the EDA Simulator Link HDL simulator launch command.
After you issue the EDA Simulator Link HDL simulator launch command
with batch mode specified, start the simulation in Simulink. To stop the
HDL simulator before the simulation is completed, issue the breakHd1Sim
command.

Specifying Batch mode with nclaunch (for use with Cadence Incisive)

Issue the nclaunch command with "Batch" as the runmode parameter, as
follows:

nclaunch('tclstart',manchestercmds, 'runmode', 'Batch')

You can also set runmode to "Batch with Xterm", which starts the HDL
simulator in the background but shows the session in an Xterm.

Run MATLAB Test Bench Simulation

Specifying Batch mode with vsim (for use with Mentor Graphics
ModelSim)

On Windows, specifying batch mode causes ModelSim to be run in a
non-interactive command window. On Linux, specifying batch mode causes
Modelsim to be run in the background with no window.

Issue the vsim command with "Batch" as the runmode parameter, as follows:

>> vysim('tclstart',manchestercmds, 'runmode', 'Batch')

Specifying Batch mode with launchDiscovery (for use with Synopsys
Discovery)

Issue the launchDiscovery command with "Batch" as the RunMode
parameter, as follows:

pv = launchDiscovery(

'LinkType', 'Simulink’,

langParam, 'vliog',

'TopLevel', ‘gainx2',

"RunMode ', 'Batch',

'PreSimTcl', {'force clk 0 O, 1 1 -repeat 2'},
"AccFile’', [srcbase '/gainx2.pli_acc.tab']

You can also set RunMode to "Batch with Xterm", which starts the HDL
simulator in the background but shows the session in an Xterm.

Applying Stimuli to Test Bench Session with the HDL
Simulator force Command

After you establish a link between the HDL simulator and MATLAB, you can
then apply stimuli to the test bench or component cosimulation environment.

One way of applying stimuli is through the iport parameter of the linked
MATLAB function. This parameter forces signal values by deposit.

Other ways to apply stimuli include issuing force commands in the HDL

simulator main window (for ModelSim, you can also use the Edit > Clock
option in the ModelSim Signals window).

1-41

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

For example, consider the following sequence of force commands:
e Incisive

force osc_top.clk_enable 1 -after Ons
force osc_top.reset 0 -after Ons 1 -after 40ns 0 -after 120ns
force osc_top.clk 1 -after Ons O -after 40ns -repeat 80ns

¢ ModelSim

VSIM n> force clk 0 0 ns, 1 5 ns -repeat 10 ns
VSIM n> force clk_en 1 0
VSIM n> force reset 0 0

® Discovery

force osc_top.clk_enable 1 -after Ons
force osc_top.reset 0 -after Ons 1 -after 40ns 0 -after 120ns
force osc_top.clk 1 -after Ons 0 -after 40ns -repeat 80ns

These commands drive the following signals:

¢ The clk signal to 0 at 0 nanoseconds after the current simulation time
and to 1 at 5 nanoseconds after the current HDL simulation time. This
cycle repeats starting at 10 nanoseconds after the current simulation
time, causing transitions from 1 to 0 and O to 1 every 5 nanoseconds, as
the following diagram shows.

o]

t 0 5 10 20 30

For example,

force /foobar/clk 00, 15 -repeat 10

® The clk_en signal to 1 at 0 nanoseconds after the current simulation time.

® The reset signal to 0 at 0 nanoseconds after the current simulation time.

1-42

Run MATLAB Test Bench Simulation

Incisive Users: Using HDL to Code Clock Signals Instead of
the force Command

You should consider using HDL to code clock signals as force is a lower
performance solution in the current version of Cadence Incisive simulators.

The following are ways that a periodic force might be introduced:

¢ Via the Clock pane in the HDL Cosimulation block
® Via pre/post Tcl commands in the HDL Cosimulation block

® Via a user-input Tel script to ncsim

All three approaches may lead to performance degradation.

Restarting a Test Bench Simulation

Because the HDL simulator issues the service requests during a MATLAB
cosimulation session, you must restart the session from the HDL simulator.
To restart a session, perform the following steps:

1 Make the HDL simulator your active window, if your input focus was not
already set to that application.

2 Reload HDL design elements and reset the simulation time to zero.

3 Incisive and ModelSim Users: Reissue the matlabtb or matlabcp
command.

4 Discovery Users: Call the restart command. restart also sources
(runs) the pre-Tcl commands specified in launchdiscovery. Therefore, if
matlabtb or matlabcp was included in the pre-Tcl commands, there is
no need to call the function again.

Note To restart a simulation that is in progress, issue a break command and
end the current simulation session before restarting a new session.

1-43

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

Stop Test Bench Simulation

When you are ready to stop a test bench session, it is best to do so in an orderly
way to avoid possible corruption of files and to ensure that all application
tasks shut down appropriately. You should stop a session as follows:

1 Make the HDL simulator your active window, if your input focus was not
already set to that application.

2 Halt the simulation. You must quit the simulation at the HDL simulator
side or MATLAB may hang until the simulator is quit.

3 Close your project.

4 Exit the HDL simulator, if you are finished with the application.

5 Quit MATLAB, if you are finished with the application. If you want to
shut down the server manually, stop the server by calling hdldaemon with
the 'kill' option:

hdldaemon('kill")

For more information on closing HDL simulator sessions, see the HDL
simulator documentation.

1-44

Tutorial — Running a Sample ModelSim and MATLAB® Test Bench Session

Tutorial - Running a Sample ModelSim and MATLAB Test
Bench Session

In this section...

“Tutorial Overview” on page 1-45

“Setting Up Tutorial Files” on page 1-46

“Starting the MATLAB Server” on page 1-46
“Setting Up the ModelSim Simulator” on page 1-47
“Developing the VHDL Code” on page 1-49
“Compiling the VHDL File” on page 1-51
“Developing the MATLAB Function” on page 1-52
“Loading the Simulation” on page 1-54

“Running the Simulation” on page 1-56

“Shutting Down the Simulation” on page 1-61

Tutorial Overview

This tutorial guides you through the basic steps for setting up an EDA
Simulator Link application that uses MATLAB to verify a simple HDL design.
In this tutorial, you develop, simulate, and verify a model of a pseudorandom
number generator based on the Fibonacci sequence. The model is coded in
VHDL.

Note This tutorial demonstrates creating and running a test bench using
ModelSim SE 6.5. If you are not using this version, the messages and screen
images from ModelSim may not appear to you exactly as they do in this
tutorial.

This tutorial requires MATLAB, the EDA Simulator Link software, and the
ModelSim HDL simulator.

1-45

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

Setting Up Tutorial Files

To ensure that others can access copies of the tutorial files, set up a folder
for your own tutorial work:

1 Create a folder outside the scope of your MATLAB installation folder into
which you can copy the tutorial files. The folder must be writable. This
tutorial assumes that you create a folder named MyPlayArea.

2 Copy the following files to the folder you just created:

matlabroot\toolbox\edalink\extensions\modelsim\modelsimdemos\modsimrand_plot.m
matlabroot\toolbox\edalink\extensions\modelsim\modelsimdemos\VHDL\modsimrand\

modsimrand.vhd

Starting the MATLAB Server

This section describes starting MATLAB, setting up the current folder for
completing the tutorial, starting the product’s MATLAB server component,
and checking for client connections, using shared memory or the server’s
TCP/IP socket mode. These instructions assume you are familiar with the
MATLAB user interface.

Perform the following steps:

1 Start MATLAB.

2 Set your MATLAB current folder to the folder you created in “Setting Up
Tutorial Files” on page 1-46.

3 Verify that the MATLAB server is running by calling function hd1ldaemon
with the 'status' option in the MATLAB Command Window as shown
here:

hdldaemon('status')

If the server is not running, the function displays

HDLDaemon is NOT running

If the server is running in TCP/IP socket mode, the message reads

HDLDaemon socket server is running on Port portnum with 0 connections

1-46

Tutorial — Running a Sample ModelSim and MATLAB® Test Bench Session

If the server is running in shared memory mode, the message reads
HDLDaemon shared memory server is running with O connections
If the server is not currently running, skip to step 5.
4 Shut down the server by typing
hdldaemon('kill"')

You will see the following message that confirms that the server was shut
down.

HDLDaemon server was shutdown

5 Start the server in TCP/IP socket mode by calling hd1ldaemon with the
property name/property value pair 'socket' 0. The value O specifies
that the operating system assign the server a TCP/IP socket port that is
available on your system. For example

hdldaemon('socket', 0)

The server informs you that it has started by displaying the following
message. The portnum will be specific to your system:

HDLDaemon socket server is running on Port portnum with O connections

Make note of portnum as you will need it when you issue the matlabtb
command in “Loading the Simulation” on page 1-54.

You can alternatively specify that the MATLAB server use shared memory
communication instead of TCP/IP socket communication; however, for this
tutorial we will use socket communication as means of demonstrating this
type of connection. For details on how to specify the various options, see
the description of hdldaemon.

Setting Up the ModelSim Simulator

This section describes the basic procedure for starting the ModelSim software
and setting up a ModelSim design library. These instructions assume you are
familiar with the ModelSim user interface.

Perform the following steps:

1-47

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1 Start ModelSim from the MATLAB environment by calling the function
vsimin the MATLAB Command Window.

vsim

This function launches and configures ModelSim for use with the EDA
Simulator Link software. The first folder of ModelSim matches your
MATLAB current folder.

2 Verify the current ModelSim folder. You can verify that the current
ModelSim folder matches the MATLAB current folder by entering the 1s
command in the ModelSim command window.

L] Transcript

ModelSim= 13 -
compile_and launch.tcl

modsimrand.vhd

modaimrand plot.m

transcript

ModelSim: | =

The command should list the files modsimrand.vhd, modsimrand _plot.m,
transcript, and compile and_launch.tcl

If it does not, change your ModelSim folder to the current MATLAB folder.
You can find the current MATLAB folder by looking in the Current Folder

Browser or by viewing the Current folder navigation bar. In ModelSim, you
can change the working folder by issuing the command

cd directory

Where directory is the folder you want to work from. Or you may also
change directory by selecting File > Change Directory....

3 Create a design library to hold your demo compilation results. To create
the library and required _info file, enter the v1ib and vmap commands as

follows:

ModelSim> v1ib work

ModelSim> vmap work work

1-48

Tutorial — Running a Sample ModelSim and MATLAB® Test Bench Session

L] Transcript

ModelSim= v1ib work -

ModelSim=> vmap work work

Copying U:‘\share‘\apps\HDLTcols\ModelSim\modelsim-§.5-tmw-001\modeltech\win3
2/../modelsim.ini to modelsim.ini

Modifying modelsim.ini

** Warning: Copied U:\share\apps\HDLTools\ModelSim\modelsim-6.5-tmnw-001mod
eltech\win32/../modelsim.ini teo modelsim.ini.

Updated modelsim.ini.

ModelSim: | —

Note You must use the ModelSim File menu or vlib command to create
the library folder to ensure that the required _info file is created. Do not
create the library with operating system commands.

Developing the VHDL Code

After setting up a design library, typically you would use the ModelSim Editor
to create and modify your HDL code. For this tutorial, you do not need to
create the VHDL code yourself. Instead, open and examine the existing file
modsimrand.vhd. This section highlights areas of code in modsimrand.vhd
that are of interest for a ModelSim and MATLAB test bench.

If you choose not to examine the HDL code at this time, skip to “Compiling
the VHDL File” on page 1-51.

You can open modsimrand.vhd in the edit window with the edit command, as
follows:

ModelSim> edit modsimrand.vhd

L] Transcript

ModelSim=> edit modsimrand.vhd

ModelSim: |

1-49

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

ModelSim opens its edit window and displays the VHDL code for
modsimrand.vhd.

1

2 —— Psuedo Random Word Generator

3 -— Demonstration of 'Link for ModelSim'

4 _

5 _

6 _

7 -— Modelsim

g -— >vsimmatlab work.modsimrand

] -— »matlabtb modsimrand -mfunc modsimrand plot -rising /modsimrand/clk

10 -— rand/c 0 0,1 5 ns -repeat 10 ns

11 -— rand/clk en 1

1z -—- »force sim:/modsimrand/reset 1 0,0 50 ns

13 -

14 -

15 - he MathWorks, -

i6 - 1 5 SDate: 59 %

7

18

s | ————————————

20 -— Entity: modsimrand

21 -— Pseudo random algorithm

2z -- Implements a uniform PN generator using

23 -— a fibonacci ssgusnce.

24

25 LIBRARY IEEE;

26 USE IEEE.std_logic_l1164.all;

27 USE IEEE.numeric_std.all;

28

29 ENTITY modsimrand IS

30 PORT (

31 clk : IN std logic ; x|
[7] [

While you are viewing the file, note the following:

® The line ENTITY modsimrand contains the definition for the VHDL entity
modsimrand:

ENTITY modsimrand IS
PORT (

clk : IN std_logic ;

clk_en : IN std_logic ;

reset : IN std_logic ;

dout : OUT std_logic_vector (31 DOWNTO 0);
END modsimrand;

This is the entity that will be verified in the MATLAB environment during
the tutorial. Note the following:

1-50

Tutorial — Running a Sample ModelSim and MATLAB® Test Bench Session

= By default, the MATLAB server assumes that the name of the MATLAB
function that verifies the entity in the MATLAB environment is the
same as the entity name. You have the option of naming the MATLAB
function explicitly. However, if you do not specify a name, the server
expects the function name to match the entity name. In this example,
the MATLAB function name is modsimrand_plot and does not match.

= The entity must be defined with a PORT clause that includes at least one
port definition. Each port definition must specify a port mode (IN, OUT, or
INOUT) and a VHDL data type that is supported by the EDA Simulator
Link software. For a list of the supported types, see “Code HDL Modules
for Verification Using MATLAB ” on page 1-7.

The entity modsimrand in this example is defined with three input
ports clk, clk_en, and reset of type STD_LOGIC and output port dout
of type STD_LOGIC_ VECTOR. The output port passes simulation output
data out to the MATLAB function for verification. The optional input
ports receive clock and reset signals from the function. Alternatively, the
input ports can receive signals from ModelSim force commands.

For more information on coding port entities for use with MATLAB, see
“Code HDL Modules for Verification Using MATLAB ” on page 1-7.

¢ The remaining code for modsimrand.vhd defines a behavioral architecture
for modsimrand that writes a randomly generated Fibonacci sequence to an
output register when the clock experiences a rising edge.

When you are finished examining the file, close the ModelSim edit window.

Compiling the VHDL File

After you create or edit your VHDL source files, compile them. As part of this
tutorial, compile modsimrand.vhd. One way of compiling the file is to click the
file name in the project workspace and select Compile > Compile All. An
alternative is to specify modsimrand.vhd with the vcom command, as follows:

ModelSim> vcom modsimrand.vhd

If the compilation succeeds, messages appear in the command window and
the compiler populates the work library with the compilation results.

1-51

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-52

- Transcript

ModelSim> wcom modsimrand.vhd -

Model Technology ModelSim S5E veom 6.5 Compiler 2009.01 Jan 22 2009

-- Loading package standard

-- Loading package std logic 1164

-— Loading package mumeric std

—— Compiling entity modsimrand

-— Compiling architecture behavioral of modsimrand

MndelSim>] (=
-

Developing the MATLAB Function

The EDA Simulator Link software verifies HDL hardware in MATLAB as a
function. Typically, at this point you would create or edit a MATLAB function
that meets EDA Simulator Link requirements. For this tutorial, you do not
need to develop the MATLAB test bench function yourself. Instead, open and
examine the existing file modsimrand_plot.m.

If you choose not to examine the HDL code at this time, skip to “Loading
the Simulation” on page 1-54.

Note modsimrand_plot.m is a lower-level component of the MATLAB
Random Number Generator Demo. Plotting code within modsimrand_plot.m
is not discussed in the next section. This tutorial focuses only on those parts of
modsimrand_plot.m that are required for MATLAB to verify a VHDL model.

You can open modsimrand_plot.min the MATLAB Edit/Debug window. For
example:

edit modsimrand_plot.m

While you are viewing the file, note the following:

¢ On line 1, you will find the MATLAB function name specified along with its
required parameters:

function [iport,tnext] = modsimrand_plot(oport,tnow,portinfo)

Tutorial — Running a Sample ModelSim and MATLAB® Test Bench Session

This function definition is significant because it represents the
communication channel between MATLAB and ModelSim. Note:

When coding the function, you must define the function with two output
parameters, iport and tnext, and three input parameters, oport, tnow,
and portinfo. See “Defining EDA Simulator Link MATLAB Functions
and Function Parameters” on page 7-42.

You can use the iport parameter to drive input signals instead

of, or in addition to, using other signal sources, such as ModelSim
force commands. Depending on your application, you might use any
combination of input sources. However, if multiple sources drive signals
to a single iport, you will need a resolution function to handle signal
contention.

On lines 22 and 23, you will find some parameter initialization:

tnext = [];
iport = struct();

In this case, function outputs iport and tnext are initialized to empty
values.

When coding a MATLAB function for use with EDA Simulator Link, you
need to know the types of the data that the test bench function receives from
and needs to return to ModelSim and how EDA Simulator Link handles
this data; see “Performing Data Type Conversions” on page 7-5. This
function includes the following port data type definitions and conversions:

The entity defined for this tutorial consists of three input ports of type
STD_LOGIC and an output port of type STD_LOGIC VECTOR.

= Data of type STD_LOGIC_VECTOR consists of a column vector of characters
with one bit per character.

The interface converts scalar data of type STD_LOGIC to a character that
matches the character literal for the corresponding enumerated type.

On line 62, the line of code containing oport.dout shows how the data that
a MATLAB function receives from ModelSim might need to be converted
for use in the MATLAB environment:

ud.buffer(cyc) = mvl2dec(oport.dout)

1-53

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-54

In this case, the function receives STD_LOGIC_VECTOR data on oport. The
function mvl2dec converts the bit vector to a decimal value that can be used
in arithmetic computations. “Performing Data Type Conversions” on page
7-5 provides a summary of the types of data conversions to consider when
coding your own MATLAB functions.

® Feel free to browse through the rest of modsimrand plot.m. When you are
finished, go to “Loading the Simulation” on page 1-54.

Loading the Simulation

After you successfully compile the VHDL source file, you are ready to load the
model for simulation. This section explains how to load an instance of entity
modsimrand for simulation:

1 Load the instance of modsimrand for verification. To load the instance,
specify the vsimmatlab command as follows:

ModelSim> vsimmatlab modsimrand

The vsimmatlab command starts the ModelSim simulator, vsim,
specifically for use with MATLAB. ModelSim displays a series of messages
in the command window as it loads the entity’s packages and architecture.

Tutorial = Running a Sample ModelSim and MATLAB® Test Bench Session

[7] ModelSim SE 6.5 ol
File Edit View Comple Smulate Add Transcript Tools Layout Window Help
b -8 s nwB0 A [w m||cuax]

JJ{«W [a0 A O e B W [0
JLamth‘

modsimran. ..
W standard standard UUUUUUULUULLUL Out
H std_logic_1164 std_logic_1... Pg q fl UL Internal
W numeric_std numeric_std

[
& Transcript -

Loading V:i/jobarchive/Adoc/2009 07_28_h22m59324_job89935_pass/matlab/tooclbox/edalink/extensicns/mo 2
delsim/windows32/1liblfmhdlc tmwvs.dll

VSIM 10]

-

[Mow: 0 ns Delta: 0 [sim: /modsimrand [[n: 1coo [rEAD

2 Initialize the simulator for verifying modsimrand with MATLAB. You
initialize ModelSim by using the EDA Simulator Link matlabtb command.
This command defines the communication link and a callback to a
MATLAB function that executes in MATLAB on behalf of ModelSim. In
addition, the matlabtb command can specify parameters that control when
the MATLAB function executes.

For this tutorial, enter the following matlabtb command:

1-55

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-56

VSIM n> matlabtb modsimrand -mfunc modsimrand_plot -rising

/modsimrand/clk -socket portnum

Arguments in the command line specify the following conditions:
® modsimrand—=Specifies the VHDL module to cosimulate.

e -mfunc modsimrand_plot—Links an instance of the entity modsimrand
to the MATLAB function modsimrand_plot.m. The argument is required
because the entity name is not the same as the test bench function name.

® -rising /modsimrand/clk—Specifies that the test bench function be
called whenever signal /modsimrand/clk experiences a rising edge.

® -socketportnum—Specifies the port number issued with or returned by
the call to hdldaemon in “Starting the MATLAB Server” on page 1-46.

3 Initialize clock and reset input signals. You can drive simulation input
signals using several mechanisms, including ModelSim force commands
and an iport parameter (see “Syntax of a Test Bench Function” on page
1-15). For now, enter the following force commands:

VSIM n> force /modsimrand/clk O O ns, 1 5 ns -repeat 10 ns
VSIM n> force /modsimrand/clk_en 1
VSIM n> force /modsimrand/reset 1 0, 0 50 ns

The first command forces the clk signal to value 0 at 0 nanoseconds and to
1 at 5 nanoseconds. After 10 nanoseconds, the cycle starts to repeat every
10 nanoseconds. The second and third force commands set c1lk_en to 1
and reset to 1 at 0 nanoseconds and to 0 at 50 nanoseconds.

The ModelSim environment is ready to run a simulation. Now, you need to
set up the MATLAB function.

Running the Simulation

This section explains how to start and monitor this simulation, and rerun it, if
necessary. When you have completed as many simulation runs as desired,
shut down the simulation as described in the next section.

Tutorial — Running a Sample ModelSim and MATLAB® Test Bench Session

Running the Simulation for the First Time

Before running the simulation for the first time, you must verify the client
connection. You may also want to set breakpoints for debugging.

Perform the following steps:

1 Open ModelSim and MATLAB windows.

2 In MATLAB, verify the client connection by calling hdldaemon with the
"status' option:

hdldaemon('status')
This function returns a message indicating a connection exists:

HDLDaemon socket server is running on port 4795 with 1 connection

Or

HDLDaemon shared memory server is running with 1 connection

Note If you attempt to run the simulation before starting the hd1daemon
in MATLAB, you will receive the following warning:

#ML Warn - MATLAB server not available (yet),
The entity 'modsimrand’' will not be active

3 Open modsimrand_plot.min the MATLAB Edit/Debug window.

4 Search for oport.dout and set a breakpoint at that line by clicking next to
the line number. A red breakpoint marker will appear.

5 Return to ModelSim and enter the following command in the command
window:

VSIM n> run 80000

This command instructs ModelSim to advance the simulation 80,000 time
steps (80,000 nanoseconds using the default time step period). Because

1-57

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

you previously set a breakpoint in modsimrand _plot.m, however, the
simulation runs in MATLAB until it reaches the breakpoint.

ModelSim is now blocked and remains blocked until you explicitly unblock
it. While the simulation is blocked, note that MATLAB displays the data
that ModelSim passed to the MATLAB function in the Workspace window.

) MATLAB _1ol x|
File Edit Debug Parallel Desktop Window Help
hﬂ = ‘ & By L“_% L A] |3‘1- @ i’] | (7] |0Jnenthder:|D:\MyP\ayArea LI_I
* Shortcuts 7] How to Add | #] What's New
‘Workspace NS || Command Window w0 a x
=l = 5 B |51BCKI | & select to plot - >» hdldaemon('status')
Mame £ I\c'alue |Min IM; HDLDaemon i= NOT running
:Hcyc 1 1 1 >> hdldaemon
;Ehax_h\st 5.0012 50012 5. :lDLDan-Emun shared memory server is running with 0 connections
[hax_vals 0.0012 0.0012 0. 7> veim
Elport < 1x1 struct> »»> hdldaemon('=status')
Emndsimj\nt 1 HDLDaemon shared memory server is running with 1 connection
[nbins 2% 2% 2% 62 ud.buffer(cyc) = mvl2dec(oport.dout): 3% buffer scalar values from simulator
E‘ oport <1x1 struct> K>
E‘ portinfo <1x1 struct>
EEmext [1
[tnow il 0 0
E‘ ud <1x1struct>
Jx
4 | ®
Command History w02 x|
=l
ndldaemon (' status') ZI . | 3

4\ Start | Stopped in debugger

OVR 4

In ModelSim, an empty figure window opens. You can use this window to
plot data generated by the simulation.

6 Examine oport, portinfo, and tnow by hovering over these arguments
inside the MATLAB Editor. Observe that tnow, the current simulation
time, is set to 0. Also notice that, because the simulation has reached
a breakpoint during the first call to modsimrand_plot, the portinfo
argument is visible in the MATLAB workspace.

1-58

Tutorial — Running a Sample ModelSim and MATLAB® Test Bench Session

7 Click Debug > Continue in the MATLAB Edit/Debug window. The next
time the breakpoint is reached, notice that portinfo no longer appears in
the MATLAB workspace. The portinfo function does not show because it
is passed in only on the first function invocation. Also note that the value
of tnow advances from 0 to 5e-009.

8 Clear the breakpoint by clicking the red breakpoint marker.

9 Unblock ModelSim and continue the simulation by clicking
Debug > Continue in the MATLAB Edit/Debug window.

The simulation runs to completion. As the simulation progresses, it plots

generated data in a figure window. When the simulation completes, the
figure window appears as shown here.

1-59

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-60

i

This demo illustrates the mechanism of hooking up ModelSim with
MATLAB. Each invocation of 'modsimrand_plat’ callback function
fram modelsim updates the following PN sequence and histogram plots

X 105 PN Sequence Startup
e T T T T T T T 1
3l Plots the integer
values produced
Al during the first

2400 cycles after
a reset.

1 1 1 1 1 I 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Time (# simulator steps)

Histogram of PN Sequence

Plats the distribution
of values produced
by the generator after
the startup period.
This will approach
(statistically) a flat
response for & good
PM generator.

0 0.5 1 1.5 2 25 3 35 4 45
Bins of generated random numbers x10°

The simulation runs in MATLAB until it reaches the breakpoint that you just
set. Continue the simulation/debugging session as desired.

Rerunning the Simulation

If you want to run the simulation again, you must restart the simulation in
ModelSim, reinitialize the clock, and reset input signals. To do so:

1 Close the figure window.

2 Restart the simulation with the following command:

Tutorial — Running a Sample ModelSim and MATLAB® Test Bench Session

VSIM n> restart

The Restart dialog box appears. Leave all the options enabled, and click
Restart.

Note The Restart button clears the simulation context established by a
matlabtb command. Thus, after restarting ModelSim, you must reissue
the previous command or issue a new command.

3 Reissue the matlabtb command.

VSIM n> matlabtb modsimrand -mfunc modsimrand_plot -rising

/modsimrand/clk -socket portnum

4 Open modsimrand_plot.min the MATLAB Edit/Debug window.
5 Set a breakpoint at the same line as in the previous run.

6 Return to ModelSim and re-enter the following commands to reinitialize
clock and input signals:

VSIM n> force /modsimrand/clk 0 0,1 5 ns -repeat 10 ns

VSIM n> force /modsimrand/clk_en 1
VSIM n> force /modsimrand/reset 1 0, 0 50 ns

7 Enter a command to start the simulation, for example:

VSIM n> run 80000

Shutting Down the Simulation
This section explains how to shut down a simulation in an orderly way.

In ModelSim, perform the following steps:

1 Stop the simulation on the client side by selecting Simulate > End
Simulation or entering the quit command.

2 Quit ModelSim.

1-61

1 Simulating an HDL Component in a MATLAB® Test Bench Environment

1-62

In MATLAB, you can just quit the application, which will shut down the
simulation and also close MATLAB.

To shut down the server without closing MATLAB, you have the option of
calling hdldaemon with the 'kill' option:

hdldaemon('kill"')

The following message appears, confirming that the server was shut down:

HDLDaemon server was shutdown

Replacing an HDL
Component with a MATLAB

Component Function

® “Overview to Using a MATLAB Function as a Component” on page 2-2
® “Code HDL Modules for Visualization Using MATLAB” on page 2-7

® “Create an EDA Simulator Link MATLAB Component Function” on page
2-13

e “Place Component Function on MATLAB Search Path” on page 2-15

e “Start Connection to HDL Simulator for Component Function Session”
on page 2-16

¢ “Launch HDL Simulator for Use with MATLAB Component Session” on
page 2-18

* “Invoke matlabcp to Bind MATLAB Component Function Calls” on page
2-20

® “Schedule Options for a Component Session” on page 2-25
¢ “Run MATLAB Component Function Simulation” on page 2-29

e “Stop Component Simulation” on page 2-38

2 Replacing an HDL Component with a MATLAB® Component Function

2-2

Overview to Using a MATLAB Function as a Component

In this section...

“How MATLAB and the HDL Simulator Communicate During a Component
Session” on page 2-2

“Workflow for Creating a MATLAB Component Function for Use with the

HDL Simulator” on page 2-4

How MATLAB and the HDL Simulator Communicate
During a Component Session

The EDA Simulator Link software provides a means for visualizing HDL
components within the MATLAB environment. You do so by coding an HDL
model and a MATLAB function that can share data with the HDL model. This
chapter discusses the programming, interfacing, and scheduling conventions
for MATLAB component functions that communicate with the HDL simulator.

MATLAB component functions simulate the behavior of components in the
HDL model. A stub module (providing port definitions only) in the HDL model
passes its input signals to the MATLAB component function. The MATLAB
component processes this data and returns the results to the outputs of the
stub module. A MATLAB component typically provides some functionality
(such as a filter) that is not yet implemented in the HDL code.

The following figure shows how an HDL simulator wraps around a MATLAB
component function and how MATLAB communicates with the HDL
simulator during a component simulation session.

Overview to Using a MATLAB Function as a Component

HDL Simulator

MATLAB
Component
M-Function

HDL

When linked with MATLAB, the HDL simulator functions as the client, with
MATLAB as the server. The following figure shows a multiple-client scenario
connecting to the server at TCP/IP socket port 4449.

. MATLAB
HDL Simulator ‘ Link p| Port Server

Client 4449

HDL Simulator Link
Client <

The MATLAB server can service multiple simultaneous HDL simulator
sessions and HDL modules. However, you should follow recommended
guidelines to ensure the server can track the I/0 associated with each
module and session. The MATLAB server, which you start with the supplied
MATLAB function hdldaemon, waits for connection requests from instances
of the HDL simulator running on the same or different computers. When
the server receives a request, it executes the specified MATLAB function
you have coded to perform tasks on behalf of a module in your HDL design.
Parameters that you specify when you start the server indicate whether the
server establishes shared memory or TCP/IP socket communication links.

2 Replacing an HDL Component with a MATLAB® Component Function

Refer to“Establishing EDA Simulator Link Machine Configuration
Requirements” on page 6-26 for valid machine configurations.

Note The programming, interfacing, and scheduling conventions for test
bench functions and component functions are virtually identical (see Chapter
1, “Simulating an HDL Component in a MATLAB Test Bench Environment”).
For the most part, the same procedures apply to both types of functions.

Workflow for Creating a MATLAB Component
Function for Use with the HDL Simulator

The following workflow shows the steps necessary to create a MATLAB
component function for cosimulation with the HDL simulator using EDA
Simulator Link.

Overview to Using a MATLAB Function as a Component

Create HDL module

Compile, elaborate, and
simulate model in HDL
simulator

A

Create component MATLAB

Y

function

Place component function on
MATLAB search path

|

Start hdldaemon to provide
connectivity for HDL simulator

|

Launch HDL simulator for use
with MATLAB and load EDA
Simulator Link libraries

Bind HDL instance with
component function using
matlabcp

I

Add scheduling options

r
Set breakpoints for interactive
HDL debug (optional)

Run cosimulation from HDL
simulator

Needto

Component -
function a;l]]_:;l
runas ma P
parameters?

expected?

Disconnect session

Yes

Needto No

modify
function
code?

Modify HDL
code and try
again

2 Replacing an HDL Component with a MATLAB® Component Function

2-6

The workflow is as follows:

1 Create HDL module Compile, elaborate, and simulate model in HDL
simulator . See “Code HDL Modules for Visualization Using MATLAB”
on page 2-7.

2 Create component MATLAB function. See “Create an EDA Simulator Link
MATLAB Component Function” on page 2-13.

3 Place component function on MATLAB search path. See “Place Test Bench
Function on MATLAB Search Path” on page 1-21.

4 Start hdldaemon to provide connectivity for HDL simulator. See “Start
Connection to HDL Simulator for Test Bench Session” on page 1-22.

5 Launch HDL simulator for use with MATLAB and load EDA Simulator
Link libraries. See “Launch HDL Simulator for Use with MATLAB Test
Bench” on page 1-24

6 Bind HDL instance with component function using matlabcp. See “Invoke
matlabtb to Bind MATLAB Test Bench Function Calls” on page 1-26.

7 Add scheduling options. See “Schedule Options for a Test Bench Session”
on page 1-31.

8 Set breakpoints for interactive HDL debug (optional).

9 Run cosimulation from HDL simulator. See “Run MATLAB Test Bench
Simulation” on page 1-35.

10 Disconnect session. See “Stop Component Simulation” on page 2-38.

Code HDL Modules for Visualization Using MATLAB

Code HDL Modules for Visualization Using MATLAB

In this section...

“Overview to Coding HDL Modules for Visualization with MATLAB” on
page 2-7

“Choosing an HDL Module Name for Use with a MATLAB Component
Function” on page 2-8

“Specifying Port Direction Modes in HDL Module for Use with Component
Functions” on page 2-8

“Specifying Port Data Types in HDL Modules for Use with Component
Functions” on page 2-8

“Compiling and Elaborating the HDL Design for Use with Component
Functions” on page 2-10

Overview to Coding HDL Modules for Visualization
with MATLAB

The most basic element of communication in the EDA Simulator Link
interface is the HDL module. The interface passes all data between the HDL
simulator and MATLAB as port data. The EDA Simulator Link software
works with any existing HDL module. However, when you code an HDL
module that is targeted for MATLAB verification, you should consider its
name, the types of data to be shared between the two environments, and the
direction modes. The sections within this chapter cover these topics.

The process for coding HDL modules for MATLAB visualization is as follows:

® Choose an HDL module name.

® Specify port direction modes in HDL components.
® Specify port data types in HDL components.

¢ Compile and debug the HDL model.

2-7

2 Replacing an HDL Component with a MATLAB® Component Function

2-8

Choosing an HDL Module Name for Use with a
MATLAB Component Function

Although not required, when naming the HDL module, consider choosing a
name that also can be used as a MATLAB function name. (Generally, naming
rules for VHDL or Verilog and MATLAB are compatible.) By default, EDA
Simulator Link software assumes that an HDL module and its simulation
function share the same name. See “Invoke matlabtb to Bind MATLAB Test
Bench Function Calls” on page 1-26.

For details on MATLAB function-naming guidelines, see “MATLAB
Programming Tips” on files and file names in the MATLAB documentation.

Specifying Port Direction Modes in HDL Module for
Use with Component Functions

In your module statement, you must specify each port with a direction mode
(input, output, or bidirectional). The following table defines these three modes.

Use VHDL Use Verilog | For Ports That...

Mode... Mode...

IN input Represent signals that can be driven by a
MATLAB function

ouT output Represent signal values that are passed to
a MATLAB function

INOUT inout Represent bidirectional signals that can
be driven by or pass values to a MATLAB
function

Specifying Port Data Types in HDL Modules for Use
with Component Functions

This section describes how to specify data types compatible with MATLAB
for ports in your HDL modules. For details on how the EDA Simulator Link
interface converts data types for the MATLAB environment, see “Performing
Data Type Conversions” on page 7-5.

Code HDL Modules for Visualization Using MATLAB

Note If you use unsupported types, the EDA Simulator Link software issues
a warning and ignores the port at run time. For example, if you define your
interface with five ports, one of which is a VHDL access port, at run time,
then the interface displays a warning and your code sees only four ports.

Port Data Types for VHDL Entities

In your entity statement, you must define each port that you plan to test with
MATLAB with a VHDL data type that is supported by the EDA Simulator
Link software. The interface can convert scalar and array data of the
following VHDL types to comparable MATLAB types:

® STD_LOGIC, STD_ULOGIC, BIT, STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR,
and BIT_VECTOR

® INTEGER and NATURAL

® REAL

® TIME

¢ Enumerated types, including user-defined enumerated types and

CHARACTER

The interface also supports all subtypes and arrays of the preceding types.

Note The EDA Simulator Link software does not support VHDL extended
identifiers for the following components:

® Port and signal names used in cosimulation

¢ Enum literals when used as array indices of port and signal names used
in cosimulation

However, the software does support basic identifiers for VHDL.

2-9

2 Replacing an HDL Component with a MATLAB® Component Function

2-10

Port Data Types for Verilog Modules

In your module definition, you must define each port that you plan to test
with MATLAB with a Verilog port data type that is supported by the EDA
Simulator Link software. The interface can convert data of the following
Verilog port types to comparable MATLAB types:

® reg

® integer

® wire

Note EDA Simulator Link software does not support Verilog escaped
identifiers for port and signal names used in cosimulation. However, it does
support simple identifiers for Verilog.

Compiling and Elaborating the HDL Design for Use
with Component Functions

After you create or edit your HDL source files, use the HDL simulator
compiler to compile and debug the code.

Compilation for ModelSim

You have the option of invoking the compiler from menus in the ModelSim
graphic interface or from the command line with the vcom command. The
following sequence of ModelSim commands creates and maps the design
library work and compiles the VHDL file modsimrand.vhd:

ModelSim> v1ib work
ModelSim> vmap work work
ModelSim> vcom modsimrand.vhd

The following sequence of ModelSim commands creates and maps the design
library work and compiles the Verilog file test.v:

ModelSim> vlib work
ModelSim> vmap work work
ModelSim> vlog test.v

Code HDL Modules for Visualization Using MATLAB

Note You should provide read/write access to the signals that are connecting
to the MATLAB session for cosimulation. For higher performance, you

want to provide access only to those signals used in cosimulation. You can
check read/write access through the HDL simulator—see HDL simulator
documentation for details.

Compilation for Incisive

The Cadence Incisive simulator allows for 1-step and 3-step processes for HDL
compilation, elaboration, and simulation. The following Cadence Incisive
simulator command compiles the Verilog file test.v:

sh> ncvlog test.v

The following Cadence Incisive simulator command compiles and elaborates
the Verilog design test.v, and then loads it for simulation, in a single step:

sh> ncverilog +gui +access+rwc +linedebug test.v

The following sequence of Cadence Incisive simulator commands performs all
the same processes in multiple steps:

sh> ncvlog -linedebug test.v
sh> ncelab -access +rwc test
sh> ncsim test

Note You should provide read/write access to the signals that are connecting
to the MATLAB session for cosimulation. The previous example shows

how to provide read/write access to all signals in your design. For higher
performance, you want to provide access only to those signals used in
cosimulation. See the description of the +access flag to ncverilog and the
-access argument to ncelab for details.

2-11

2 Replacing an HDL Component with a MATLAB® Component Function

2-12

Compilation for Discovery

Compilation of source files for use with MATLAB and Discovery is most
easily accomplished using the scripts automatically generated by the EDA
Simulator Link HDL simulator launch command launchDiscovery. See the
Examples section of the reference page for launchDiscovery.

Note You should provide read/write access to the signals that are connecting
to the MATLAB session for cosimulation. For higher performance, you want to
provide access only to those signals used in cosimulation. A tab file is included
in the simulation via the required launchDiscovery property "AccFile".

For more examples, see the EDA Simulator Link tutorials and demos. For
details on using the HDL compiler, see the simulator documentation.

Create an EDA Simulator Link™ MATLAB® Component Function

Create an EDA Simulator Link MATLAB Component Function

In this section...

“Overview to Coding an EDA Simulator Link Component Function” on
page 2-13

“Syntax of a Component Function” on page 2-14

Overview to Coding an EDA Simulator Link
Component Function

Coding a MATLAB function that is to visualize an HDL module or component
requires that you follow specific coding conventions. You must also
understand the data type conversions that occur, and program data type
conversions for operating on data and returning data to the HDL simulator.

To code a MATLAB function that is to verify an HDL module or component,
perform the following steps:

1 Learn the syntax for a MATLAB EDA Simulator Link component function
(see “Syntax of a Component Function” on page 2-14.).

2 Understand how EDA Simulator Link software converts data from the
HDL simulator for use in the MATLAB environment (see “Performing Data
Type Conversions” on page 7-5).

3 Choose a name for the MATLAB component function (see “Invoke matlabcp
to Bind MATLAB Component Function Calls” on page 2-20).

4 Define expected parameters in the component function definition line
(see “Defining EDA Simulator Link MATLAB Functions and Function
Parameters” on page 7-42).

5 Determine the types of port data being passed into the function (see
“Defining EDA Simulator Link MATLAB Functions and Function
Parameters” on page 7-42).

6 Extract and, if appropriate for the simulation, apply information received

in the portinfo structure (see “Gaining Access to and Applying Port
Information” on page 7-45).

2-13

2 Replacing an HDL Component with a MATLAB® Component Function

2-14

7 Convert data for manipulation in the MATLAB environment, as necessary
(see “Converting HDL Data to Send to MATLAB” on page 7-5).

8 Convert data that needs to be returned to the HDL simulator (see
“Converting Data for Return to the HDL Simulator” on page 7-10).

Syntax of a Component Function
The syntax of a MATLAB component function is

function [iport, tnext] = MyFunctionName (oport, tnow, portinfo)

The input/output arguments (iport and oport) for a MATLAB component
function are the reverse of the port arguments for a MATLAB test bench
function. That is, the MATLAB component function returns signal data to the
outputs and receives data from the inputs of the associated HDL module.

Initialize the function outputs to empty values at the beginning of the function
as in the following example:

tnext = [];
oport struct();

See the “Defining EDA Simulator Link MATLAB Functions and Function
Parameters” on page 7-42 for an explanation of each of the function
arguments. For more information on using tnext and tnow for simulation
scheduling with matlabcp, see “Scheduling Component Functions Using the
tnext Parameter” on page 2-26.

Place Component Function on MATLAB Search Path

Place Component Function on MATLAB Search Path

In this section...
“Use MATLAB which Function to Find Component Function” on page 2-15
“Add Component Function to MATLAB Search Path” on page 2-15

Use MATLAB which Function to Find Component
Function

The MATLAB function that you are associating with an HDL component must
be on the MATLAB search path or reside in the current working folder (see
the MATLAB cd function). To verify whether the function is accessible, use
the MATLAB which function. The following call to which checks whether the
function MyVhd1Function is on the MATLAB search path, for example:

which MyVhdlFunction
/work/incisive/MySym/MyVhdlFunction.m

If the specified function is on the search path, which displays the complete
path to the function. If the function is not on the search path, which informs
you that the file was not found.

Add Component Function to MATLAB Search Path

To add a MATLAB function to the MATLAB search path, open the Set
Path window by clicking File > Set Path, or use the addpath command.
Alternatively, for temporary access, you can change the MATLAB working
folder to a desired location with the cd command.

2-15

2 Replacing an HDL Component with a MATLAB® Component Function

2-16

Start Connection to HDL Simulator for Component Function
Session

In this section...

“Start MATLAB Server for Component Function Session” on page 2-16
“Example of Starting MATLAB Server for Component Function Session”

on page 2-17

Start MATLAB Server for Component Function Session
Start the MATLAB server as follows:

1 Start MATLAB.

2 In the MATLAB Command Window, call the hdldaemon function with
property name/property value pairs that specify whether the EDA
Simulator Link software is to perform the following tasks:

e Use shared memory or TCP/IP socket communication

¢ Return time values in seconds or as 64-bit integers

See hdldaemon reference documentation for when and how to specify property
name/property value pairs and for more examples of using hd1ldaemon.

The communication mode that you specify (shared memory or TCP/IP sockets)
must match what you specify for the communication mode when you initialize
the HDL simulator for use with a MATLAB link session using the matlabtb
or matlabcp function. In addition, if you specify TCP/IP socket mode, the
socket port that you specify with hdldaemon and matlabtb or matlabcp must
match. For more information on modes of communication, see “Specifying
TCP/IP Socket Communication” on page 6-29.

The MATLAB server can service multiple simultaneous HDL simulator
modules and clients. However, your code must track the I/O associated with
each entity or client.

Start Connection to HDL Simulator for Component Function Session

Note You cannot begin an EDA Simulator Link transaction between
MATLAB and the HDL simulator from MATLAB. The MATLAB server simply
responds to function call requests that it receives from the HDL simulator.

Example of Starting MATLAB Server for Component
Function Session

The following command specifies using socket communication on port 4449
and a 64-bit time resolution format for the MATLAB function’s output ports.

hdldaemon('socket', 4449, 'time', 'int64')

2-17

2 Replacing an HDL Component with a MATLAB® Component Function

2-18

Launch HDL Simulator for Use with MATLAB Component

Session

In this section...

“Launching the HDL Simulator for Component Session” on page 2-18

“Loading an HDL Design for Visualization” on page 2-18

Launching the HDL Simulator for Component Session

Start the HDL simulator directly from MATLAB by calling the MATLAB
functionvsim, nclaunch, or launchDiscovery. See “Using EDA Simulator
Link with HDL Simulators ” for instructions on starting the HDL simulator
for use with EDA Simulator Link.

Loading an HDL Design for Visualization

After you start the HDL simulator from MATLAB with a call to vsim or
nclaunch, load an instance of an HDL module for verification or visualization
with the function vsimmatlab or hdlsimmatlab. If you are using Discovery,
start the HDL simulator from MATLAB and load an instance of an HDL
module for verification with a call to launchDiscovery('PropertyType',
'"PropertyValue'...). At this point, you should have coded and compiled
your HDL model. Issue the function vsimmatlab or hdlsimmatlab for each
instance of an entity or module in your model that you want to cosimulate.
For example (for use with Incisive):

hdlsimmatlab work.osc_top

This command loads the EDA Simulator Link library, opens a simulation
workspace for osc_top, and displayd a series of messages in the HDL
simulator command window as the simulator loads the entity (see demo for
remaining code).

Another example is (for use with Discovery):

launchDiscovery (
'VerilogFiles', 'osc_top.v',
'TopLevel', 'osc_top',

Launch HDL Simulator for Use with MATLAB Component Session

"RunMode ', 'GUI ",
'"RunDir',projdir,...
'LinkType', '"MATLAB',...
'PreSimTcl', preSimTclCmds,
'AccFile',tabaccessfile,...
'V1ogAnFlags', '"+v2k"'

);

This command loads osc_top in the HDL simulator and executes the
preSimTclCmds commands (see Oscillator demo for remaining code).

2-19

2 Replacing an HDL Component with a MATLAB® Component Function

2-20

Invoke matlabcp to Bind MATLAB Component Function

In this section...

“Invoking the MATLAB Component Function Command matlabcp” on page
2-20

“Binding the HDL Module Component to the MATLAB Component
Function” on page 2-23

Invoking the MATLAB Component Function Command
matlabcp

You invoke matlabcp by issuing the command in the HDL simulator. See
the Examples section of the matlabcp reference page for several examples
of invoking matlabcp.

Be sure to follow the path specifications for MATLAB component
function sessions when invoking matlabcp, as explained in “Specifying
HDL Signal/Port and Module Paths for MATLAB Component Function
Cosimulation” on page 2-20.

For instructions in issuing the matlabcp command, see “Running a Test
Bench Cosimulation” on page 1-36.

Specifying HDL Signal/Port and Module Paths for MATLAB
Component Function Cosimulation

EDA Simulator Link software has specific requirements for specifying HDL
design hierarchy, the syntax of which is described in the following sections:
one for Verilog at the top level, and one for VHDL at the top level. Do not use
a file name hierarchy in place of the design hierarchy name.

The rules stated in this section apply to signal/port and module path
specifications for MATLAB link sessions. Other specifications may work but
the EDA Simulator Link software does not officially recognize nor support
them.

In the following example:

Invoke matlabcp to Bind MATLAB Component Function Calls

matlabtb u_osc_filter -mfunc oscfilter

u_osc_filter is the top-level component. If you specify a subcomponent, you
must follow valid module path specifications for MATLAB link sessions.

Path Specifications for MATLAB Link Sessions with Verilog Top Level.

¢ The path specification must start with a top-level module name.

¢ The path specification can include "." or "/" path delimiters, but it cannot
include mixed delimiters.

¢ The leaf module or signal must match the HDL language of the top-level
module.

The following examples show valid signal and module path specifications:

top.port_or_sig
/top/sub/port_or_sig
top

top/sub
top.sub1.sub2

The following examples show invalid signal and module path specifications:

® top.sub/port_or_sig
Why this specification is invalid: You cannot use mixed delimiters.

e :sub:port_or_sig

:sub

Why this specification is invalid: When you use VHDL-specific delimiters
you limit the interoperability with paths when moving between HDL
simulators and between VHDL and Verilog.

Path Specifications for MATLAB Link Sessions with VHDL Top Level.

¢ The path specification can include the top-level module name, but you do
not have to include it.

2-21

2 Replacing an HDL Component with a MATLAB® Component Function

® The path specification can include "." or "/" path delimiters, but it cannot
include mixed delimiters.

® The leaf module or signal must match the HDL language of the top-level
module.

Examples for ModelSim and Incisive Users

The following examples show valid signal and module path specifications:

top.port_or_sig
/sub/port_or_sig
top

top/sub
top.subi1.sub2

The following examples show invalid signal and module path specifications:
® top.sub/port_or_sig

Why this specification is invalid: You cannot use mixed delimiters.

® :sub:port_or_sig

:sub

Why this specification is invalid: When you use VHDL-specific delimiters
you limit the interoperability with paths when moving between HDL
simulators and between VHDL and Verilog.

Examples for Discovery Users

The following examples show valid signal and module path specifications:
top.port_or_sig
top
top/sub
top.sub1.sub2

The following examples show invalid signal and module path specifications:

® top.sub/port_or_sig

2-22

Invoke matlabcp to Bind MATLAB Component Function Calls

Why this specification is invalid: You cannot use mixed delimiters.
® /sub/port_or_sig
Why this specification is invalid: You have not specified the top level.

® :sub:port_or_sig

1sub
Why this specification is invalid: When you use VHDL-specific delimiters

you limit the interoperability with paths when moving between HDL
simulators and between VHDL and Verilog.

Binding the HDL Module Component to the MATLAB
Component Function

By default, the EDA Simulator Link software assumes that the name for a
MATLAB function matches the name of the HDL module that the function
verifies. When you create a test bench or component function that has a
different name than the design under test, you must associate the design
with the MATLAB function using the -mfunc argument to matlabtb. This
argument associates the HDL module instance to a MATLAB function that
has a different name from the HDL instance.

For more information on the -mfunc argument and for a full list of matlabtb
parameters, see the matlabtb function reference.

For details on MATLAB function naming guidelines, see "MATLAB
Programming Tips" on files and file names in the MATLAB documentation.

Example of Binding Test Bench and Component Function Calls

In this first example, you form an association between the inverter_vl
component and the MATLAB test bench function inverter_tb by invoking the
function matlabtb with the -mfunc argument when you set up the simulation.

matlabtb inverter_vl -mfunc inverter_tb

The matlabtb command instructs the HDL simulator to call back the
inverter_tb function when inverter_vl executes in the simulation.

2-23

2 Replacing an HDL Component with a MATLAB® Component Function

2-24

In this second example, you bind the model osc_top.u_osc_filter to the
component function oscfilter:

matlabcp osc_top.u_osc_filter -mfunc oscfilter

When the HDL simulator calls the oscfilter callback, the function knows to
operate on the model osc_top.u_osc_filter.

Schedule Options for a Component Session

Schedule Options for a Component Session

In this section...

“About Scheduling Options for Component Sessions” on page 2-25

“Scheduling Component Session Using matlabcp Arguments” on page 2-25

“Scheduling Component Functions Using the tnext Parameter” on page 2-26

About Scheduling Options for Component Sessions
There are two ways to schedule the invocation of a MATLAB function:

¢ Using the arguments to the EDA Simulator Link function matlabtb or
matlabcp

¢ Inside the MATLAB function using the tnext parameter

The two types of scheduling are not mutually exclusive. You can combine
the matlabtb or matlabcp timing arguments and the tnext parameter of a
MATLAB function to schedule test bench or component session callbacks.

Scheduling Component Session Using matlabcp
Arguments

By default, the EDA Simulator Link software invokes a MATLAB test
bench or component function once (at the time that you make the call to
matlabtb/matlabcp). If you want to apply more control, and execute the
MATLAB function more than once, use the command scheduling options.
With these options, you can specify when and how often the EDA Simulator
Link software invokes the relevant MATLAB function. If necessary, modify
the function or specify timing arguments when you begin a MATLAB test
bench or component function session with the matlabtb/matlabcp function.

You can schedule a MATLAB test bench or component function to execute
using the command arguments under any of the following conditions:

® Discrete time values—Based on time specifications that can also include
repeat intervals and a stop time

¢ Rising edge—When a specified signal experiences a rising edge

2-25

2 Replacing an HDL Component with a MATLAB® Component Function

2-26

= VHDL: Rising edge is {0 or L} to {1 or H}.
= Verilog: Rising edge is the transition from O to x, z, or 1, and from x
or z to 1.
¢ Falling edge—When a specified signal experiences a falling edge
= VHDL: Falling edge is {1 or H} to {0 or L}.
= Verilog: Falling edge is the transition from 1 to x, z, or 0, and from

x or z to O.

* Signal state change—When a specified signal changes state, based on a
list using the -sensitivity argument to matlabtb.

Scheduling Component Functions Using the tnext
Parameter

You can control the callback timing of a MATLAB function by using that
function’s tnext parameter. This parameter passes a time value to the HDL
simulator, and the value gets added to the simulation schedule for that
function. If the function returns a null value ([]) , the software does not add
any new entries to the schedule.

You can set the value of tnext to a value of type double or int64. Specify
double to express the callback time in seconds. For example, to schedule
a callback in 1 ns, specify::

tnext = 1e-9

Specify int64 to convert to an integer multiple of the current HDL simulator
time resolution limit. For example: if the HDL simulator time precision is 1
ns, to schedule a callback at 100 ns, specify:

tnext=1int64(100)

Schedule Options for a Component Session

Note The tnext parameter represents time from the start of the simulation.
Therefore, tnext must always be greater than tnow. If it is less, the software
does not schedule a callback.

For more information on tnext and the function prototype, see “Defining EDA
Simulator Link MATLAB Functions and Function Parameters” on page 7-42.

Examples of Scheduling with thext

In this first example, each time the HDL simulator calls the test bench
function (via EDA Simulator Link), tnext schedules the next callback to the
MATLAB function for 1 ns later, relative to the current simulation time:

tnext [1;

tnext = tnow+1e-9;

Using tnext you can dynamically decide the callback scheduling based on
criteria specific to the operation of the test bench. For example, you can decide
to stop scheduling callbacks when a data signal has a certain value:

if gsum == 17,
qsum = 0;
disp('done');
tnext = []; % suspend callbacks
testisdone = 1;
return;
end

This next example demonstrates scheduling a component session using
tnext. In the Oscillator demo, the oscfilter function calculates a time interval
at which the HDL simulator calls the callbacks. The component function
calculates this interval on the first call to oscfilter and stores the result in the
variable fastestrate. The variable fastestrate represents the sample period of
the fastest oversampling rate supported by the filter. The function derives
this rate from a base sampling period of 80 ns.

2-27

2 Replacing an HDL Component with a MATLAB® Component Function

The following assignment statement sets the timing parameter tnext. This
parameter schedules the next callback to the MATLAB component function,
relative to the current simulation time (tnow).

tnext = tnow + fastestrate;

The function returns a new value for tnext each time the HDL simulator
calls the function.

2-28

Run MATLAB Component Function Simulation

Run MATLAB Component Function Simulation

In this section...

“Process for Running MATLAB Component Function Cosimulation” on
page 2-29

“Checking the MATLAB Server’s Link Status for Component Cosimulation”
on page 2-29

“Running a Component Function Cosimulation” on page 2-30

“Applying Stimuli to Component Function with the HDL Simulator force
Command” on page 2-35

“Restarting a Component Simulation” on page 2-37

Process for Running MATLAB Component Function

Cosimulation
To start and control the execution of a simulation in the MATLAB
environment, perform the following steps:

1 “Checking the MATLAB Server’s Link Status for Test Bench Cosimulation”
on page 1-35

2 Run and monitor the cosimulation session.
3 Apply stimuli (optional).

4 Restart simulator during a cosimulation session (if necessary).

Checking the MATLAB Server’s Link Status for

Component Cosimulation

The first step to starting an HDL simulator and MATLAB test bench or
component function session is to check the MATLAB server’s link status. Is
the server running? If the server is running, what mode of communication
and, if applicable, what TCP/IP socket port is the server using for its links?
You can retrieve this information by using the MATLAB function hdldaemon
with the 'status' option. For example:

hdldaemon('status')

2-29

2 Replacing an HDL Component with a MATLAB® Component Function

The function displays a message that indicates whether the server is running
and, if it is running, the number of connections it is handling. For example:

HDLDaemon socket server is running on port 4449 with 0 connections

If the server is not running, the message reads

HDLDaemon is NOT running

See the Options: Inputs section in the hdldaemon reference documentation
for information on determining the mode of communication and the TCP/IP
socket in use.

Running a Component Function Cosimulation

You can run a cosimulation session using both the MATLAB and HDL
simulator GUIs (typical) or, to reduce memory demand, you can run the
cosimulation using the command line interface (CLI) or in batch mode.

® “Cosimulation with MATLAB Using the HDL Simulator GUI” on page 1-36

¢ “Cosimulation with MATLAB Using the Command Line Interface (CLI)”
on page 1-38

® “Cosimulation with MATLAB Using Batch Mode” on page 1-40

Cosimulation with MATLAB Using the HDL Simulator GUI

These steps describe a typical sequence for running a simulation interactively
from the main HDL simulator window:

1 Set breakpoints in the HDL and MATLAB code to verify and analyze
simulation progress and correctness.

How you set breakpoints in the HDL simulator will vary depending on
what simulator application you are using.

In MATLAB, there are several ways you can set breakpoints; for example,
by using the Set/Clear Breakpoint button on the toolbar.

2 Issue matlabtb command at the HDL simulator prompt.

2-30

Run MATLAB Component Function Simulation

When you begin a specific test bench or component session, you specify
parameters that identify the following information:

¢ The mode and, if appropriate, TCP/IP data necessary for connecting to a
MATLAB server (see matlabtb reference)

¢ The MATLAB function that is associated with and executes on behalf
of the HDL instance (see “Binding the HDL Module Component to the
MATLAB Test Bench Function” on page 1-29)

¢ Timing specifications and other control data that specifies when the
module’s MATLAB function is to be called (see “Schedule Options for a
Test Bench Session” on page 1-31)

For example:

hdlsim> matlabtb osc_top -sensitivity /osc_top/sine_out
-socket 4448 -mfunc hosctb

3 Start the simulation by entering the HDL simulator run command.

The run command offers a variety of options for applying control over how
a simulation runs (refer to your HDL simulator documentation for details).
For example, you can specify that a simulation run for several time steps.

The following command instructs the HDL simulator to run the loaded
simulation for 50000 time steps:

run 50000

4 Step through the simulation and examine values.

How you step through the simulation in the HDL simulator will vary
depending on what simulator application you are using.

In MATLAB, there are several ways you can step through code; for
example, by clicking the Step toolbar button.

5 When you block execution of the MATLAB function, the HDL simulator
also blocks and remains blocked until you clear all breakpoints in the
function’s code.

6 Resume the simulation, as needed.

2-31

2 Replacing an HDL Component with a MATLAB® Component Function

2-32

How you resume the simulation in the HDL simulator will vary depending
on what simulator application you are using.

In MATLAB, there are several ways you can resume the simulation; for
example, by clicking the Continue toolbar button.

The following HDL simulator command resumes a simulation:

run -continue

For more information on HDL simulator and MATLAB debugging features,
see the appropriate HDL simulator documentation and MATLAB online help
or documentation.

Cosimulation with MATLAB Using the Command Line Interface
(CLI)

Running your cosimulation session using the command-line interface allows
you to interact with the HDL simulator during cosimulation, which can be
helpful for debugging.

To use the CLI, specify "CLI" as the property value for the run mode
parameter of the EDA Simulator Link HDL simulator launch command.

The Tcl command you build to pass to the HDL simulator launch command
must contain the run command or no cosimulation will take place.

Caution Close the terminal window by entering "quit -f" at the command
prompt. Do not close the terminal window by clicking the "X" in the upper
right-hand corner. This causes a memory-type error to be issued from the
system. This is not a bug with EDA Simulator Link but just the way the
HDL simulator behaves in this context.

You can type CTRL+C to interrupt and terminate the simulation in the HDL
simulator but this action also causes the memory-type error to be displayed.

Run MATLAB Component Function Simulation

Specifying CLI mode with nclaunch (for use with Cadence Incisive)

Issue the nclaunch command with "CLI" as the runmode property value, as
follows (example entered into the MATLAB editor):

tclemd = { ['cd ',projdir],...
['exec ncvlog ' srcfile],...
'exec ncelab -access +wc lowpass_filter',...
['hdlsimmatlab -gui lowpass_filter ',

-input "{@matlabtb lowpass_filter 10ns -repeat 10ns -mfunc filter_tb_incisive}"',...

-input "{@force lowpass_filter.clk_enable 1 -after Ons}"',...
' -input "{@force lowpass_filter.reset 1 -after Ons 0 -after 22ns}"',...

-input "{@force lowpass_filter.clk 1 -after Ons O -after 5ns -repeat 10ns}"',...
-input "{@deposit lowpass_filter.filter_in 0}"',...

1}
nclaunch('tclstart',tclcmd, 'runmode', 'CLI');

Specifying CLI mode with vsim (for use with Mentor Graphics
ModelSim)

Issue the vsim command with "CLI" as the runmode property value, as follows
(example entered into the MATLAB editor):

tclemd = { ['cd ',unixprojdir],...
'vlib work',... %create library (if necessary)
'force /osc_top/clk_enable 1 0',...
'force /osc_top/reset 1 0, 0 120 ns',...
'force /osc_top/clk 1 0 ns, 0 40 ns -r 80ns',...
b

vsim('tclstart',tclcmd, 'runmode', 'CLI');

Specifying CLI mode with launchDiscovery (for use with Synopsys
Discovery)

Issue the launchDiscovery command with "CLI" as the RunMode parameter,
as follows:

preSimTclCmds = { ...
'matlabtb lowpass_filter 10ns -repeat 10ns -mfunc lpfiltertestbench',...

2-33

2 Replacing an HDL Component with a MATLAB® Component Function

2-34

'force lowpass_filter.clk_enable 1 Ons',...
'force lowpass_filter.reset 1 Ons, 0 22ns',...
'force lowpass_filter.clk 1 Ons, 0 5ns -repeat 10ns',...
'force lowpass_filter.filter_in 0 -deposit'...
b

launchDiscovery(...
'VerilogFiles',srcfile, ...
'TopLevel', 'lowpass_filter', ...
'RunMode', 'CLI', ...
'RunDir',projdir,...
'LinkType', 'MATLAB', ...
'PreSimTcl', preSimTclCmds, ...
'AccFile',tabaccessfile,...
'VlogAnFlags', '"+v2k"' ..

Cosimulation with MATLAB Using Batch Mode

Running your cosimulation session in batch mode allows you to keep the
process in the background, reducing demand on memory by disengaging the
GUL

To use the batch mode, specify "Batch" as the property value for the run mode
parameter of the EDA Simulator Link HDL simulator launch command.
After you issue the EDA Simulator Link HDL simulator launch command
with batch mode specified, start the simulation in Simulink. To stop the
HDL simulator before the simulation is completed, issue the breakHd1Sim
command.

Specifying Batch mode with nclaunch (for use with Cadence Incisive)

Issue the nclaunch command with "Batch" as the runmode parameter, as
follows:

nclaunch('tclstart',manchestercmds, 'runmode', 'Batch')

You can also set runmode to "Batch with Xterm", which starts the HDL
simulator in the background but shows the session in an Xterm.

Run MATLAB Component Function Simulation

Specifying Batch mode with vsim (for use with Mentor Graphics
ModelSim)

On Windows, specifying batch mode causes ModelSim to be run in a
non-interactive command window. On Linux, specifying batch mode causes
Modelsim to be run in the background with no window.

Issue the vsim command with "Batch" as the runmode parameter, as follows:

>> vysim('tclstart',manchestercmds, 'runmode', 'Batch')

Specifying Batch mode with launchDiscovery (for use with Synopsys
Discovery)

Issue the launchDiscovery command with "Batch" as the RunMode
parameter, as follows:

pv = launchDiscovery(

'LinkType', 'Simulink’,

langParam, 'vliog',

'TopLevel', ‘gainx2',

"RunMode ', 'Batch',

'PreSimTcl', {'force clk 0 O, 1 1 -repeat 2'},
"AccFile’', [srcbase '/gainx2.pli_acc.tab']

You can also set RunMode to "Batch with Xterm", which starts the HDL
simulator in the background but shows the session in an Xterm.

Applying Stimuli to Component Function with the
HDL Simulator force Command

After you establish a link between the HDL simulator and MATLAB, you can
then apply stimuli to the test bench or component cosimulation environment.

One way of applying stimuli is through the iport parameter of the linked
MATLAB function. This parameter forces signal values by deposit.

Other ways to apply stimuli include issuing force commands in the HDL

simulator main window (for ModelSim, you can also use the Edit > Clock
option in the ModelSim Signals window).

2-35

2 Replacing an HDL Component with a MATLAB® Component Function

2-36

For example, consider the following sequence of force commands:
e Incisive

force osc_top.clk_enable 1 -after Ons
force osc_top.reset 0 -after Ons 1 -after 40ns 0 -after 120ns
force osc_top.clk 1 -after Ons O -after 40ns -repeat 80ns

¢ ModelSim

VSIM n> force clk 0 0 ns, 1 5 ns -repeat 10 ns
VSIM n> force clk_en 1 0
VSIM n> force reset 0 0

® Discovery

force osc_top.clk_enable 1 -after Ons
force osc_top.reset 0 -after Ons 1 -after 40ns 0 -after 120ns
force osc_top.clk 1 -after Ons 0 -after 40ns -repeat 80ns

These commands drive the following signals:

¢ The clk signal to 0 at 0 nanoseconds after the current simulation time
and to 1 at 5 nanoseconds after the current HDL simulation time. This
cycle repeats starting at 10 nanoseconds after the current simulation
time, causing transitions from 1 to 0 and O to 1 every 5 nanoseconds, as
the following diagram shows.

o]

t 0 5 10 20 30

For example,

force /foobar/clk 00, 15 -repeat 10

® The clk_en signal to 1 at 0 nanoseconds after the current simulation time.

® The reset signal to 0 at 0 nanoseconds after the current simulation time.

Run MATLAB Component Function Simulation

Incisive Users: Using HDL to Code Clock Signals Instead of
the force Command

You should consider using HDL to code clock signals as force is a lower
performance solution in the current version of Cadence Incisive simulators.

The following are ways that a periodic force might be introduced:

¢ Via the Clock pane in the HDL Cosimulation block
® Via pre/post Tcl commands in the HDL Cosimulation block

® Via a user-input Tel script to ncsim

All three approaches may lead to performance degradation.

Restarting a Component Simulation

Because the HDL simulator issues the service requests during a MATLAB
cosimulation session, you must restart the session from the HDL simulator.
To restart a session, perform the following steps:

1 Make the HDL simulator your active window, if your input focus was not
already set to that application.

2 Reload HDL design elements and reset the simulation time to zero.

3 Incisive and ModelSim Users: Reissue the matlabtb or matlabcp
command.

4 Discovery Users: Call the restart command. restart also sources
(runs) the pre-Tcl commands specified in launchdiscovery. Therefore, if
matlabtb or matlabcp was included in the pre-Tcl commands, there is
no need to call the function again.

Note To restart a simulation that is in progress, issue a break command and
end the current simulation session before restarting a new session.

2-37

2 Replacing an HDL Component with a MATLAB® Component Function

2-38

Stop Component Simulation

When you are ready to stop a test bench or component session, it is best to do
so in an orderly way to avoid possible corruption of files and to ensure that

all application tasks shut down appropriately. You should stop a session as
follows:

1 Make the HDL simulator your active window, if your input focus was not
already set to that application.

2 Halt the simulation. You must quit the simulation at the HDL simulator
side or MATLAB may hang until the simulator is quit.

3 Close your project.

4 Exit the HDL simulator, if you are finished with the application.

5 Quit MATLAB, if you are finished with the application. If you want to
shut down the server manually, stop the server by calling hdldaemon with

the 'kill' option:

hdldaemon('kill")

For more information on closing HDL simulator sessions, see the HDL
simulator documentation.

Simulating an HDL
Component in a Simulink
Test Bench Environment

e “Overview to Using Simulink as a Test Bench” on page 3-2

e “Create a Simulink Model for Test Bench Cosimulation with the HDL
Simulator” on page 3-9

® “Code an HDL Component for Use with Simulink Test Bench Applications”
on page 3-10

e “Launch HDL Simulator for Test Bench Cosimulation with Simulink” on
page 3-14

e “Add the HDL Cosimulation Block to the Simulink Test Bench Model”
on page 3-16

e “Define the HDL Cosimulation Block Interface for Test Bench
Cosimulation” on page 3-18

e “Run a Test Bench Cosimulation Session” on page 3-44

e “Tutorial — Verifying an HDL Model Using Simulink, the HDL Simulator,
and the EDA Simulator Link Software” on page 3-52

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-2

Overview to Using Simulink as a Test Bench

In this section...

“Understanding How the HDL Simulator and Simulink Software
Communicate Using EDA Simulator Link For Test Bench Simulation” on
page 3-2

“HDL Cosimulation Block Features for Test Bench Simulation” on page 3-5

“Workflow for Simulating an HDL Component in a Simulink Test Bench
Environment” on page 3-6

Understanding How the HDL Simulator and Simulink
Software Communicate Using EDA Simulator Link For
Test Bench Simulation

When you link the HDL simulator with a Simulink® application, the simulator
functions as the server, as shown in the following figure.

Link
HDL Simulator |, | Request Out Si(r:\?'uli?k
Server Response 1en

Out

»| In

In this case, the HDL simulator responds to simulation requests it receives
from cosimulation blocks in a Simulink model. You begin a cosimulation
session from Simulink. After a session is started, you can use Simulink
and the HDL simulator to monitor simulation progress and results. For
example, you might add signals to a wave window to monitor simulation
timing diagrams.

As the following figure shows, multiple cosimulation blocks in a Simulink
model can request the service of multiple instances of the HDL simulator,
using unique TCP/IP socket ports.

Overview to Using Simulink as a Test Bench

HDL Simulator

S
erver — Link
< ——
4449
Port Link
4448

Simulink
Client

HDL Simulator
Server

When you link the HDL simulator with a Simulink application, the simulator
functions as the server. Using the EDA Simulator Link communications
interface, an HDL Cosimulation block cosimulates a hardware component by
applying input signals to and reading output signals from an HDL model
under simulation in the HDL simulator.

This figure shows a sample Simulink model that includes an HDL
Cosimulation block. The connection is using shared memory.

Phase/Frequency Emor Controls

Input Dats
Phase Offsat

1/128] - >

data

dclk

Recoversd Clock

| Orig Raw
Orig Data -
| C=coded Raw =
—{Dalk Dececes s Errar Test
Data Align
Original Dats
Recovered Data |:|

HOL
dvalid

Dsts Validity

¥ ¥ryYyYgey

Encodad

Manchester Encoder

¥

vl
P m

sync_i

LE

Simulatar

isum_i

IL

Signal

i Inphase

qsurm_i

¥ ¥rer

10

Scope

SharedMem

Copyright 2003-2002 The MathWorks, Inc.

VHDOL Manchester Receiver

1Q Capture

Quadraturs’

12 Map

Bit Errors
Scope

The HDL Cosimulation block models a Manchester receiver that is coded in
HDL. Other blocks and subsystems in the model include the following:

¢ Frequency Error Range block, Frequency Error Slider block, and Phase
Event block

3-3

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-4

e Manchester encoder subsystem

¢ Data alignment subsystem

¢ Inphase/Quadrature (I/Q) capture subsystem

¢ Error Rate Calculation block from the Communications Blockset software
¢ Bit Errors block

e Data Scope block

® Discrete-Time Scatter Plot Scope block from the Communications Blockset
software

For information on getting started with Simulink software, see the Simulink
online help or documentation.

Understanding How Simulink Drives Cosimulation Signals

Although you can bind the output ports of an HDL Cosimulation block to
any signal in an HDL model hierarchy, you must use some caution when
connecting signals to input ports. Ensure that the signal you are binding to
does not have other drivers. If it does, use resolved logic types; otherwise
you may get unpredictable results.

If you need to use a signal that has multiple drivers and it is resolved (for
example, it is of VHDL type STD_LOGIC) , Simulink applies the resolution
function at each time step defined by the signal’s Simulink sample rate.
Depending on the other drivers, the Simulink value may or may not get
applied. Furthermore, Simulink has no control over signal changes that occur
between its sample times.

Note Verify that signals used in cosimulation have read/write access. You
can check read/write access through the HDL simulator—see HDL simulator
documentation for details. For Discovery users, a tab file is included in the
simulation via the required launchDiscovery property "AccFile".

This rule applies to all signals on the Ports, Clocks, and Tecl panes and to
signals added to the model in any other manner.

Overview to Using Simulink as a Test Bench

Handling Multirate Signals During Test Bench Cosimulation
EDA Simulator Link software supports the use of multirate signals, signals
that are sampled or updated at different rates, in a single HDL Cosimulation
block. An HDL Cosimulation block exchanges data for each signal at the
Simulink sample rate for that signal. For input signals, an HDL Cosimulation
block accepts and honors all signal rates.

The HDL Cosimulation block also lets you specify an independent sample
time for each output port. You must explicitly set the sample time for each
output port, or accept the default. Using this setting lets you control the
rate at which Simulink updates an output port by reading the corresponding
signal from the HDL simulator.

Interfacing with Continuous Time Signals

Use the Simulink Zero-Order Hold block to apply a zero-order hold (ZOH) on
continuous signals that are driven into an HDL Cosimulation block.

HDL Cosimulation Block Features for Test Bench
Simulation

The EDA Simulator Link HDL Cosimulation Block links hardware
components that are concurrently simulating in the HDL simulator to the rest
of a Simulink model.

You can link Simulink and the HDL simulator in two possible ways:

® As a single HDL Cosimulation block fitted into the framework of a larger
system-oriented Simulink model.

® As a Simulink model made up of a collection of HDL Cosimulation blocks,
each representing a specific hardware component.

The block mask contains panels for entering port and signal information,
setting communication modes, adding clocks (Incisive and ModelSim only),
specifying pre- and post-simulation Tcl commands (Incisive and ModelSim
only), and defining the timing relationship.

After you code one of your model’s components in VHDL or Verilog and
simulate it in the HDL simulator environment, you integrate the HDL

3 Simulating an HDL Component in a Simulink® Test Bench Environment

representation into your Simulink model as an HDL Cosimulation block.
There is one block for each supported HDL simulator. These blocks are
located in the Simulink Library, within the EDA Simulator Link block library.
As an example, the block for use with Mentor Graphics ModelSim is shown in
the next figure.

Modelsim '8
))
sig1 =)
Simulator sig2 b

You configure an HDL Cosimulation block by specifying values for parameters
in a block parameters dialog box. The HDL Cosimulation block parameters
dialog box consists of tabbed panes that specify the following information:

¢ Ports Pane: Block input and output ports that correspond to signals,
including internal signals, of your HDL design, and an output sample time.

¢ Connection Pane: Type of communication and related settings to be used
for exchanging data between simulators.

¢ Timescales Pane: The timing relationship between Simulink software
and the HDL simulator.

® Clocks Pane (Incisive and ModelSim only): Optional rising-edge and
falling-edge clocks to apply to your model.

e Tcl Pane (Incisive and ModelSim only): Tcl commands to run before and
after a simulation.

For more detail on each of these panes, see the HDL Cosimulation reference
page.

Workflow for Simulating an HDL Component in a
Simulink Test Bench Environment

The following workflow shows the steps necessary to cosimulate an HDL
design using Simulink software as a test bench.

Overview to Using Simulink as a Test Bench

Create Simulink model

r'y

Create HDL module
Compile, elaborate, and
simulate model in HDL

simulator

!

Launch HDL simulator for use
with MATLAB and Simulink and
load EDA Simulator Link
libraries

ry

Add HDL Cosimulation block

Define HDL Cosimulation block
interface <

!

Set breakpoints for interactive
HDL debug (optional)

Start simulation in HDL

simulator
l Modify
Run simulation Simulink
model and
try again

Yes Yes

No

Need to Need to
M°“:s' fun reconfigure modity
HDL Cosim HDL code?
?
expected? block?

The workflow is as follows:

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-8

1 Create Simulink model. See “Create a Simulink Model for Test Bench
Cosimulation with the HDL Simulator” on page 3-9.

2 Code HDL module. Compile, elaborate, and simulate model in HDL
simulator. See “Code an HDL Component for Use with Simulink Test
Bench Applications” on page 3-10.

3 Launch HDL simulator for use with MATLAB and Simulink and load EDA
Simulator Link libraries. See “Launch HDL Simulator for Test Bench
Cosimulation with Simulink” on page 3-14

4 Add HDL Cosimulation block. See “Add the HDL Cosimulation Block to
the Simulink Test Bench Model” on page 3-16.

5 Define HDL Cosimulation block interface. See “Define the HDL
Cosimulation Block Interface for Test Bench Cosimulation” on page 3-18.

6 Set breakpoints for interactive HDL debug (optional).

7 Start simulation in HDL simulator. See “Run a Test Bench Cosimulation
Session” on page 3-44.

Create a Simulink Model for Test Bench Cosimulation with the HDL Simulator

Create a Simulink Model for Test Bench Cosimulation with
the HDL Simulator

In this section...

“Creating Your Simulink Model” on page 3-9
“Running Test Bench Hardware Model in Simulink” on page 3-9
“Adding a Value Change Dump (VCD) File (Optional)” on page 3-9

Creating Your Simulink Model

Create a Simulink test bench model by adding Simulink blocks from the
Simulink Block libraries. For help with creating a Simulink model, see the
Simulink documentation.

Running Test Bench Hardware Model in Simulink

If you design a Simulink model first, run and test your model thoroughly
before replacing or adding hardware model components as EDA Simulator
Link Cosimulation blocks.

Adding a Value Change Dump (VCD) File (Optional)

You might want to add a VCD file to log changes to variable values during
a simulation session. See Chapter 5, “Recording Simulink Signal State
Transitions for Post-Processing” for instructions on adding the To VCD File
block.

3-9

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-10

Code an HDL Component for Use with Simulink Test Bench
Applications

In this section...

“Overview to Coding HDL Components for Simulink Test Bench Sessions”
on page 3-10

“Specifying Port Direction Modes in the HDL Component for Test Bench
Use” on page 3-10

“Specifying Port Data Types in the HDL Component for Test Bench Use”
on page 3-11

“Compiling and Elaborating the HDL Design for Test Bench Use” on page
3-13

Overview to Coding HDL Components for Simulink
Test Bench Sessions

The EDA Simulator Link interface passes all data between the HDL simulator
and Simulink as port data. The EDA Simulator Link software works with
any existing HDL module. However, when you code an HDL module that is
targeted for Simulink verification, you should consider the types of data to be
shared between the two environments and the direction modes.

Specifying Port Direction Modes in the HDL
Component for Test Bench Use

In your module statement, you must specify each port with a direction mode
(input, output, or bidirectional). The following table defines these three modes.

Code an HDL Component for Use with Simulink Test Bench Applications

Use VHDL Use Verilog | For Ports That...

Mode... Mode...

IN input Represent signals that can be driven by a
MATLAB function

ouT output Represent signal values that are passed to
a MATLAB function

INOUT inout Represent bidirectional signals that can
be driven by or pass values to a MATLAB
function

Specifying Port Data Types in the HDL Component
for Test Bench Use

In your module definition, you must define each port that you plan to test
with MATLAB with a Verilog port data type that is supported by the EDA
Simulator Link software. The interface can convert data of the following
Verilog port types to comparable MATLAB types:

® reg

® integer

® wire

Note EDA Simulator Link software does not support Verilog escaped
identifiers for port and signal names used in cosimulation. However, it does
support simple identifiers for Verilog.

Port Data Types for VHDL Entities

In your entity statement, you must define each port that you plan to test with
MATLAB with a VHDL data type that is supported by the EDA Simulator
Link software. The interface can convert scalar and array data of the
following VHDL types to comparable MATLAB types:

e STD_LOGIC, STD_ULOGIC, BIT, STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR,
and BIT_VECTOR

3-11

3 Simulating an HDL Component in a Simulink® Test Bench Environment

® INTEGER and NATURAL

® REAL

® TIME

® Enumerated types, including user-defined enumerated types and

CHARACTER

The interface also supports all subtypes and arrays of the preceding types.

Note The EDA Simulator Link software does not support VHDL extended
identifiers for the following components:

® Port and signal names used in cosimulation

e Enum literals when used as array indices of port and signal names used
in cosimulation

However, the software does support basic identifiers for VHDL.

Port Data Types for Verilog Entities. In your module definition, you must
define each port that you plan to test with MATLAB with a Verilog port data
type that is supported by the EDA Simulator Link software. The interface can
convert data of the following Verilog port types to comparable MATLAB types:
® reg

® integer

® wire

Note EDA Simulator Link software does not support Verilog escaped
identifiers for port and signal names used in cosimulation. However, it does
support simple identifiers for Verilog.

3-12

Code an HDL Component for Use with Simulink Test Bench Applications

Compiling and Elaborating the HDL Design for Test
Bench Use

Refer to the HDL simulator documentation for instruction in compiling and
elaborating the HDL design.

3-13

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-14

Launch HDL Simulator for Test Bench Cosimulation with
Simulink

In this section...

“Starting the HDL Simulator from MATLAB” on page 3-14

“Loading an Instance of an HDL Module for Test Bench Cosimulation”
on page 3-14

Starting the HDL Simulator from MATLAB

The options available for starting the HDL simulator for use with Simulink
vary depending on whether you run the HDL simulator and Simulink on
the same computer system.

If both tools are running on the same system, start the HDL simulator
directly from MATLAB by calling the MATLAB function vsim, nclaunch, or
launchDiscovery. Alternatively, you can start the HDL simulator manually
and load the EDA Simulator Link libraries yourself. Either way, see “Using
EDA Simulator Link with HDL Simulators ”.

Loading an Instance of an HDL Module for Test Bench
Cosimulation

Incisive users load an instance of the HDL module for cosimulation using the
hdlsimulink function. ModelSim users do the same using the vsimulink
function. Discovery users load the instance using launchDiscovery.

Example of loading HDL Module instance — Incisive users

After you start the HDL simulator from MATLAB, load an instance of an
HDL module for cosimulation with the function hdlsimulink. Issue the
command for each instance of an HDL module in your model that you want to
cosimulate.

For example:

hdlsimulink work.manchester

Launch HDL Simulator for Test Bench Cosimulation with Simulink

Example of loading HDL Module instance — ModelSim users

After you start the HDL simulator from MATLAB, load an instance of an HDL
module for cosimulation with the function vsimulink. Issue the command for
each instance of an HDL module in your model that you want to cosimulate.

For example:

vsimulink work.manchester

Example of loading HDL Module instance — Discovery users

When you start the HDL simulator from MATLAB with the launchDiscovery
command, you can load an instance of the HDL module for cosimulation at
the same time, as shown in this example from the Manchester Receiver demo:

pv = launchDiscovery (

)s

'LinkType', 'Simulink',
'VerilogFiles', vlogFiles,
'TopLevel', ‘manchester’,
'RunMode ', runMode,
'VlogAnFlags', ‘'+v2k',
'PreSimTcl',

{ 'force manchester.clk 1 0, 0 5 -repeat 10',
'force manchester.enable 1 0',
'force manchester.reset 1 0, 0 1000' },
'AccFile', fullfile(demoBase, 'manchester.pli_acc.tab')

This command opens a simulation workspace for manchester and displays a
series of messages in the HDL simulator command window as the simulator
loads the packages and architectures for the HDL module.

3-15

3 Simulating an HDL Component in a Simulink® Test Bench Environment

Add the HDL Cosimulation Block to the Simulink Test
Bench Model

In this section...

“Insert HDL Cosimulation Block” on page 3-16

“Connect Block Ports” on page 3-17

Insert HDL Cosimulation Block

After you code one of your model’s components in VHDL or Verilog

and simulate it in the HDL simulator environment, integrate the HDL
representation into your Simulink model as an HDL Cosimulation block by
performing the following steps:

1 Open your Simulink model, if it is not already open.
2 Delete the model component that the HDL Cosimulation block is to replace.

3 In the Simulink Library Browser, click the EDA Simulator Link block
library. You can then select the block library for your supported HDL
simulator. As an example, the HDL Cosimulation block icon for use with
Cadence Incisive is shown below.

HDL Block that has at least one input
sook Cosimulation port and one output port.
Incisive 5= block
sig1 X
)
Simulator sig2 |

In each block library, you will see the same To VCD block, shown below.

3-16

Add the HDL Cosimulation Block to the Simulink Test Bench Model

¥, simulink. v

To VWCD File

To VCD File

Generates a Value Change Dump
(VCD) file. For information on
using this block, see Chapter 5,
“Recording Simulink Signal State
Transitions for Post-Processing”.

4 Copy the HDL Cosimulation block icon from the Library Browser to your
model. Simulink creates a link to the block at the point where you drop

the block icon.

Connect Block Ports

Connect any HDL Cosimulation block ports to appropriate blocks in your

Simulink model.

¢ To model a sink device, configure the block with inputs only.

* To model a source device, configure the block with outputs only.

3-17

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-18

Define the HDL Cosimulation Block Interface for Test Bench
Cosimulation

In this section...

“Accessing the HDL Cosimulation Block Interface” on page 3-18
“Mapping HDL Signals to Block Ports” on page 3-19
“Specifying the Signal Data Types” on page 3-35

“Configuring the Simulink and HDL Simulator Timing Relationship” on
page 3-35

“Configuring the Communication Link in the HDL Cosimulation Block”
on page 3-36

“Specifying Pre- and Post-Simulation Tcel Commands with HDL
Cosimulation Block Parameters Dialog Box” on page 3-39

“Programmatically Controlling the Block Parameters” on page 3-41

Accessing the HDL Cosimulation Block Interface

To open the block parameters dialog box for the HDL Cosimulation block,
double-click the block icon. Simulink displays the following Block Parameters
dialog box (as an example, the dialog box for the HDL Cosimulation block for
use with Cadence Incisive is shown below).

Define the HDL Cosimulation Block Interface for Test Bench Cosimulation

Function Block Parameters: HDL Cosimulation

Simulink and Incisive Cosimulation

Cosimulate hardware components using Incisive(R) simulators. Inputs from Simulink(R) are applied to HOL signals. Qutputs
from this block are driven by HDL signals.

Ports l Clocks I Timescales Connection] Tcl]

[Enable direct feedthrough for HDL design with pure combinational datapath

Auto Fill Use the "Auto Fill' button to automatically create the signal interface from a specified HDL component
instance.
Full HDL Name I/o Mode s?mple Data Type Fraction
Time Length
New
/top/aigl Input jInherit Inherit = |Inherit
Delete =
Jtop/eigl |Output j 10|Inherit = |Tonerit
up I = :
Jtop/aig3 Output W 10|Inherit = | Inherit

Down

oK ‘ Cancel ‘ Help ‘ Apply ‘

Discovery Users The dialog box of the HDL Cosimulation for use with
Synopsys Discovery does not contain Tcl or Clocks panes. Alternative
methods for specifying this information can be found on the launchDiscovery
reference page.

Mapping HDL Signals to Block Ports

e “Specifying HDL Signal/Port and Module Paths for Cosimulation” on page
3-20

® “Obtaining Signal Information Automatically from the HDL Simulator”
on page 3-23

e “Entering Signal Information Manually” on page 3-30

3-19

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-20

e “Controlling Output Port Directly by Value of Input Port” on page 3-34

The first step to configuring your EDA Simulator Link Cosimulation block is
to map signals and signal instances of your HDL design to port definitions in
your HDL Cosimulation block. In addition to identifying input and output
ports, you can specify a sample time for each output port. You can also specify
a fixed-point data type for each output port.

The signals that you map can be at any level of the HDL design hierarchy.
To map the signals, you can perform either of the following actions:

¢ Enter signal information manually into the Ports pane of the HDL
Cosimulation Block Parameters dialog box (see “Entering Signal
Information Manually” on page 3-30). This approach can be more efficient
when you want to connect a small number of signals from your HDL model
to Simulink.

® Use the Auto Fill button to obtain signal information automatically by
transmitting a query to the HDL simulator. This approach can save
significant effort when you want to cosimulate an HDL model that has
many signals that you want to connect to your Simulink model. However,
in some cases, you will need to edit the signal data returned by the query.
See “Obtaining Signal Information Automatically from the HDL Simulator’
on page 3-23 for details.

i

Note Verify that signals used in cosimulation have read/write access. For
higher performance, you want to provide access only to those signals used in
cosimulation. This rule applies to all signals on the Ports, Clocks, and Tel
panes, and for Discovery users, those created with the launchDiscovery
function (an HDL signal access file is included in the simulation via the
required property "AccFile").

Specifying HDL Signal/Port and Module Paths for Cosimulation
These rules are for signal/port and module path specifications in Simulink.
Other specifications may work but are not guaranteed to work in this or
future releases.

Define the HDL Cosimulation Block Interface for Test Bench Cosimulation

HDL designs generally do have hierarchy; that is the reason for this syntax.
This specification does not represent a file name hierarchy.

Path specifications must follow the rules listed in the following sections:

e “Path Specifications for Simulink Cosimulation Sessions with Verilog Top
Level” on page 3-21

e “Path Specifications for Simulink Cosimulation Sessions with VHDL Top
Level” on page 3-22

Path Specifications for Simulink Cosimulation Sessions with Verilog
Top Level.

® Path specification must start with a top-level module name.

e Path specification can include "." or "/" path delimiters, but cannot include
a mixture.

® The leaf module or signal must match the HDL language of the top-level
module.

The following examples show valid signal and module path specifications:

top.port_or_sig
/top/sub/port_or_sig
top

top/sub
top.sub1.sub2

The following examples show invalid signal and module path specifications:

® top.sub/port_or_sig
Why this specification is invalid: You cannot use mixed delimiters.

® :sub:port_or_sig

:sub

3-21

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-22

Why this specification is invalid: When you use VHDL-specific delimiters
you limit the interoperability with paths when moving between HDL
simulators and between VHDL and Verilog.

Path Specifications for Simulink Cosimulation Sessions with VHDL
Top Level.

Path specification may include the top-level module name but it is not
required.

Path specification can include "." or "/" path delimiters, but cannot include
a mixture.

The leaf module or signal must match the HDL language of the top-level
module.

The following examples show valid signal and module path specifications:

top.port_or_sig
/sub/port_or_sig
top

top/sub
top.sub1.sub2

The following examples show invalid signal and module path specifications:

top.sub/port_or_sig
Why this specification is invalid: You cannot use mixed delimiters.

:sub:port_or_sig

:sub

Why this specification is invalid: When you use VHDL-specific delimiters
you limit the interoperability with paths when moving between HDL
simulators and between VHDL and Verilog.

Define the HDL Cosimulation Block Interface for Test Bench Cosimulation

Obtaining Signal Information Automatically from the HDL
Simulator

The Auto Fill button lets you begin an HDL simulator query and supply a
path to a component or module in an HDL model under simulation in the
HDL simulator. Usually, some change of the port information is required

after the query completes. You must have the HDL simulator running with
the HDL module loaded for Auto Fill to work.

The following example describes the required steps.

Note The example is based on a modified copy of the Manchester Receiver
model, in which all signals were first deleted from the Ports and Clocks
panes.

1 Open the block parameters dialog box for the HDL Cosimulation block.
Click the Ports tab. The Ports pane opens (as an example, the Ports
pane for the HDL Cosimulation block for use with ModelSim is shown
in the illustrations below).

3-23

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-24

E! Function Block Parameters: HDL Cosimulation x|
Simulink and ModelSim Cosimulation
Cosimulate hardware components with ModelSim(R) simulators. Inputs from Simulink(R) are applied to HDL signals. Outputs from this black are driven
by HDL signals.
Ports | Clocks I Timescales Connection | Td I
I Enable direct feedthrough for HDL design with pure combinational datapath
Auto Fill | Use the ‘Auto Fill' button to automatically create the signal interface from a specified HDL component instance.
Full HDL N I/0 Mod Semple D a Frastion
ame vl e | ime ata Type —
New
lunused Input LI InheriijInherit Y| Inherit
Delete |
[
Down |
oK Cancel Help Apply

Tip Delete all ports before performing Auto Fill to ensure that no unused
signal remains in the Ports list at any time.

2 Click the Auto Fill button. The Auto Fill dialog box opens.

) autoril_———TaTEY
Enter full path to component or module instance

Ok Cancel |

Define the HDL Cosimulation Block Interface for Test Bench Cosimulation

This modal dialog box requests an instance path to a component or module
in your HDL model; here you enter an explicit HDL path into the edit

field. The path you enter is not a file path and has nothing to do with the
source files.

3 In this example, the Auto Fill feature obtains port data for a
VHDL component called manchester. The HDL path is specified as
/top/manchester (path specifications will vary depending on your

HDL simulator; see “Specifying HDL Signal/Port and Module Paths for
Cosimulation” on page 4-19).

) AutoFill =10 x|

Enter full path to component or module instance
ll'tu:upimann:hesteﬂ

Ok Cancel |

4 Click OK to dismiss the dialog box and the query is transmitted.

5 After the HDL simulator returns the port data, the Auto Fill feature enters
it into the Ports pane, as shown in the following figure.

3-25

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-26

E! Function Block Parameters: HDL Cosimulation

Cosimulate hardware companents with ModelSim(R) simulators. Inputs from Simulink{R) are applied to HDL signals. Outputs from this block are driven by HDL

Simulink and ModelSim Cosimulation
’7signas

Ports | Clocks I Timescales I Connection I Td |

™ Enable direct feedthrough for HDL design with pure combinational datapath

Auto Fill | Use the ‘Auto Fill' button to automatically create the signal interface from a specified HDL companent instance.
Full HDL N I/0 Mod: e Data T: Frection
=me = | Time =E2 SYPR |1 ongth
MNew
/top/manchester/samp Input [¥|Inherit Inherit ¥|Inherit
Delete | /top/menchester/clk Input || Inhezit [Inherit | inkeric
Up /top/manchester/enzble |Input *|Inkeric Inherit ¥|Inherit
ftop/manchester/reset Input ¥|Inherit Inherit ¥|Inherit
Do | /top/manchester/data Cutput ~ 1|inheric = |Inheric
ftops/manchester/dvalid Cutput | 1]Inherit *|Inherit
/top/manchester/dclk Cutput * 1| Inherit ¥ ||Inherit
0K Cancel Help | Apply

[» I

6 Click Apply to commit the port additions.
7 Delete unused signals from Ports pane and add Clock signal.

The preceding figure shows that the query entered clock, clock enable, and
reset ports (labeled clk, enable, and reset respectively) into the ports list.

Delete the enable and reset signals from the Ports pane, and, for Incisive
and ModelSim users, add the clk signal in the Clocks pane.

For Discovery users, enter the clk signal via the PreSimTcl property of the
launchDiscovery function, as shown here:

'PreSimTcl', {'force manchester.clk 1 0, 0 5 -repeat 10'},

Both methods results in the same signals being present in the HDL
Cosimulation block, as shown in the next figures (examples shown for use
with Incisive).

Define the HDL Cosimulation Block Interface for Test Bench Cosimulation

Function Block Parameters: HDL Cosimulation1 o X
Simulink and Incisive Cosimulation

Cosimulate hardware components using Incisive(R) simulators. Inputs from Simulink(R) are applied to HDL signals. Cutputs from
this block are driven by HDL signals.

Ports I Clocks] Timescales Connection] Tel]

[Enable direct feedthrough for HOL design with pure combinational datapath

Auto Fll Use the 'Auto Fll' button to automnatically create the signal interface from a specified HDL component instance.
Sample Fraction
Full HDL lame I/0 Mode Time Data Type im—

Inherit

Inherit

Delete —
/top/manchester/data |0utput j 1|Inherit =
/top/manchester/dvalid |0utput j l|Inherit j Inherit

M Jtop/manchester/dclk |0utput j j

New
/top/manchester;samp |Input j InherilInherit =
Up

-

Inheri

1 | Inherit

Apply

OK Cancel

3-27

3 Simulating an HDL Component in a Simulink® Test Bench Environment

E Function Block Parameters: HDL Cosimulation — O X

i~ Simulink and Incisive C

Cosimulate hamdware compansnis using Incizive (R simulaters. Inputs from Simulink(R) are appled to HOL signak. Outputs fom this black are driven by
HDL signaks.

[Ports | Clocks | Timsscaks | Connsction [Tel |

You can genemts your HOL chcks in this tab. The edge specifies the active edge in your HDL design. In orderto avoid mce conditons between the
genemted clock and the inputand output signals, the first active edge will be placed at time Period/2. Other options to genemte clocks, esets, and enablkes
includa:

® Usa Simulink blocks and add the signaks to the Parts tab

® Create waveforme using HOL simulator Tel commands in the Tl tab.

® Code them in HOL.

Full HDL Hame= Active Pariod

Clock Edge

fraenr/eis e [:

Up

8 Auto Fill returns default values for output ports:
e Sample time: 1
e Data type: Inherit

¢ Fraction length: Inherit

You may need to change these values as required by your model. In this
example, the Sample time should be set to 10 for all outputs. See also
“Specifying the Signal Data Types” on page 3-35.

9 Before closing the HDL Cosimulation block parameters dialog box, click
Apply to commit any edits you have made.

3-28

Define the HDL Cosimulation Block Interface for Test Bench Cosimulation

E! Function Block Parameters: HDL Cosimulation x|
Simulink and ModelSim Cosimulation =
Cosimulate hardware companents with ModelSim(R) simulators. Inputs from Simulink{R) are applied to HDL signals. Outputs from this block are driven by HDL
signals.

Ports | Clocks I Timescales I Connection I Td |
™ Enable drect feedthrough for HOL design with pure combinational datapath
Auto Fill | Use the ‘Auto Fill' button to automatically create the signal interface from a specified HDL companent instance.
Full HDL Name I/0 Mod: e Data T: Frection
= | Time =E2 JYPS |1 ongth
New
/top/manchester/samp Input [¥|Inherit Inherit ¥|Inherit
Delete | /top/manchester/data output 7| 1|inherit ¥|Inheric
Up /top/menchester/dvalid [Output | 1|Inherit *|Inheric
ftop/manchester/dclk Cutput ¥| 1|Inherit ¥ |Inherit
Do | /top/manchester/sync_i |Output T 1|inheric = |Inheric
ftop/manchester/isum i Cutput | 1]Inherit *|Inherit
/top/manchester/gsum_i |Cutput = 1|Inherit =|Inheric
=]
0K | Cancel | Help | Apply |

Observe that Auto Fill returned information about all inputs and outputs
for the targeted component. In many cases, this will include signals that
function in the HDL simulator but cannot be connected in the Simulink
model. You may delete any such entries from the list in the Ports pane if
they are unwanted. You can drive the signals from Simulink; you just have to
define their values by laying down Simulink blocks.

Note that Auto Fill does not return information for internal signals. If your
Simulink model needs to access such signals, you must enter them into the
Ports pane manually. For example, in the case of the Manchester Receiver
model, you would need to add output port entries for top/manchester/sync_i,
top/manchester/isum_i, and top/manchester/qsum_i, as shown in step 8.

Incisive and ModelSim users: Note that clk, reset, and clk_enable may be

in the Clocks and Tcl panes but they don’t have to be. These signals can be
ports if you choose to drive them explicitly from Simulink.

3-29

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-30

Note When you import VHDL signals using Auto Fill, the HDL simulator
returns the signal names in all capitals.

Entering Signal Information Manually

To enter signal information directly in the Ports pane, perform the following
steps:

1 In the HDL simulator, determine the signal path names for the HDL
signals you plan to define in your block. For example, in the ModelSim
simulator, the following wave window shows all signals are subordinate to
the top-level module manchester.

Define the HDL Cosimulation Block Interface for Test Bench Cosimulation

File Edit WView Add Format Toolz Window

=10l x|

-2 & 4 2R
@4 «w [FF] oo SEIEEBE I DP OB S
AT D\ N Bl ok 2| AQ24QR

Messages
Jmanchester fsamp
Jmanchester/dk
Jmanchester fenable

Jggkﬂklj:jr
[y] F

U
U
U
U
U
U
U
U
(SIN/NN}
UL

-
£-. nr's .|-_-|||||||| ||||||£__!-|i-||||||| |||||||-I|:I::I!-|i-||||||| ||||||. -||||||| IIIIII.IE: |-|-||||||| e — |
e Cursor 1 Ons
q 3K 3 [IET] O] |

| 0ns to 995 ns | Now: Ons Delta: 0 y

2 In Simulink, open the block parameters dialog box for your HDL
Cosimulation block, if it is not already open.

3 Select the Ports pane tab. Simulink displays the following dialog box
(example shown for use with Discovery).

3-31

3 Simulating an HDL Component in a Simulink® Test Bench Environment

L Function Block Parameters: HDL Cosimulation2 - 0O X

Simulink and Discovery Cosimulation

Cosimulate hardware components using Discovery(R) simulators. Inputs from Simulink(R) are applied to HDL signals. Qutputs
from this block are driven by HDL signals.

Ports 1 Timescales Connection

[T Enable direct feedthrough for HOL design with pure combinational datapath

Auto Fill Use the 'Auto Fll' button to autormatically create the signal interface from a specified HDL component
instance
Full HDL Name I/0 mode S3MPLE|popg qype [FT2CElem
Time Length

Delete —
Jtop/aigl |0utput j 10|Inherit

/top/aig3 Output = 10 |Inherit =|inherit
Down

Inherit

New
Jtop/sigl Input jInherit Inherit = |Inherit
Up

oK ‘ Cancel ‘ Help ‘ Apply ‘

In this pane, you define the HDL signals of your design that you want to
include in your Simulink block and set a sample time and data type for
output ports. The parameters that you should specify on the Ports pane
depend on the type of device the block is modeling as follows:

¢ For a device having both inputs and outputs: specify block input ports,
block output ports, output sample times and output data types.

For output ports, accept the default or enter an explicit sample time.
Data types can be specified explicitly, or set to Inherit (the default). In
the default case, the output port data type is inherited either from the
signal connected to the port, or derived from the HDL model.

¢ For a sink device: specify block output ports.

® For a source device: specify block input ports.

4 Enter signal path names in the Full HDL name column by double-clicking
on the existing default signal.

¢ Use HDL simulator path name syntax (see “Specifying HDL Signal/Port
and Module Paths for Cosimulation” on page 4-19).

¢ If you are adding signals, click New and then edit the default values.
Select either Input or Output from the I/O Mode column.

3-32

Define the HDL Cosimulation Block Interface for Test Bench Cosimulation

e If you want to, set the Sample Time, Data Type, and Fraction Length

parameters for signals explicitly, as discussed in the remaining steps.

When you have finished editing clock signals, click Apply to register your

changes with Simulink.

The following dialog box shows port definitions for an HDL Cosimulation
block. The signal path names match path names that appear in the HDL
simulator wave window (Incisive example shown).

Ports I Clocks] Timescales

Function Block Parameters: HDL Cosimulationi

Simulink and Incisive Cosimulation

Connection] Tl]

™ Enable direct feedthrough for HOL design with pure combinational datapath

Cosimulate hardware components using Incisive(R) simulators. Inputs from Simulink(R) are applied to HDL signals. Outputs from
this block are driven by HDL signals.

Auto Fill Use the "Auto AIl' button to automatically create the signal interface from a specified HDL component instance.
Sample Fraction
Full HDL Hame 1/0 Mode . Data Type E—
New
/top/manchester/samp |Input j InheriffInherit = ‘ Inherit
Delete =
/top/manchester/data |0utput j 10|Inherit | Inh=rit
up | o s , =
Jtop/manchester/dvalid Output 10|Inherit = | Inherit
Down /top/manchester/delk |0utput j lD|Inherit j Inherit
/top/manchester/sync_i |0utput j lD|Inherit j Inherit
/top/manchester/isum_i |Clutput j lU|Inher.1t j Inherit
/top/manchester/qsum_i |Output jl 1D|Inherit j Inherit
OK | Cancel | Help Apply

Note When you define an input port, make sure that only one source is
set up to force input to that port. If multiple sources drive a signal, your
Simulink model may produce unpredictable results.

3-33

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-34

5 You must specify a sample time for the output ports. Simulink uses the
value that you specify, and the current settings of the Timescales pane,
to calculate an actual simulation sample time.

For more information on sample times in the EDA Simulator Link
cosimulation environment, see “Understanding the Representation of
Simulation Time” on page 7-14.

6 You can configure the fixed-point data type of each output port explicitly
if desired, or use a default (Inherited). In the default case, Simulink
determines the data type for an output port as follows:

If Simulink can determine the data type of the signal connected to the
output port, it applies that data type to the output port. For example,
the data type of a connected Signal Specification block is known by
back-propagation. Otherwise, Simulink queries the HDL simulator to
determine the data type of the signal from the HDL module.

To assign an explicit fixed-point data type to a signal, perform the following
steps:

a Select either Signed or Unsigned from the Data Type column.

b If the signal has a fractional part, enter the Fraction Length.

For example, if the model has an 8-bit signal with Signed data type and
a Fraction Length of 5, the HDL Cosimulation block assigns it the
data type sfix8 En5. If the model has an Unsigned 16-bit signal with no
fractional part (a Fraction Length of 0), the HDL Cosimulation block
assigns it the data type ufix16.

7 Before closing the dialog box, click Apply to register your edits.

Controlling Output Port Directly by Value of Input Port

Enabling direct feedthrough allows input port value changes to propagate to
the output ports in zero time, thus eliminating the possible delay at output
sample in HDL designs with pure combinational logic. Specify the option to
enable direct feedthrough on the Ports pane, as shown in the following figure.

Define the HDL Cosimulation Block Interface for Test Bench Cosimulation

=] Function Block Parameters: HDL Cosimulation

’75imulink and ModelSim Cosimulation

Cosimulate hardware components with ModelSim(R) simulators. Inputs from Simulink(R) are applied to HOL sigr
by HOL signals.

Ports | Clocks Timescales Connection I Td |

[Enable direct feedthrough for HOL design with pure combinational datapath

Discovery Users You may not enable direct feedthrough if your design
contains mixed HDL (VHDL and Verilog). If you do, EDA Simulator Link will
display an error in the HDL simulator.

For more about the direct feedthrough feature, see “Eliminating Block
Simulation Latency” on page 7-37.

Specifying the Signal Data Types
The Data Type and Fraction Length parameters apply only to output

signals. See Data Type and Fraction Length on the Ports pane description
of the HDL Cosimulation block.

Configuring the Simulink and HDL Simulator Timing
Relationship

You configure the timing relationship between Simulink and the HDL
simulator by using the Timescales pane of the block parameters dialog box.
Before setting the Timescales parameters, you should read “Understanding
the Representation of Simulation Time” on page 7-14 to understand the
supported timing modes and the issues that will determine your choice of
timing mode.

You can specify either a relative or an absolute timing relationship between

Simulink and the HDL simulator in the Timescales pane, as described in the
HDL Cosimulation block reference.

3-35

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-36

Defining the Simulink and HDL Simulator Timing Relationship

The differences in the representation of simulation time can be reconciled in
one of two ways using the EDA Simulator Link interface:

¢ By defining the timing relationship manually (with Timescales pane)

When you define the relationship manually, you determine how many
femtoseconds, picoseconds, nanoseconds, microseconds, milliseconds,
seconds, or ticks in the HDL simulator represent 1 second in Simulink.

This quantity of HDL simulator time can be expressed in one of the
following ways:

= In relative terms (i.e., as some number of HDL simulator ticks). In
this case, the cosimulation is said to operate in relative timing mode.
The HDL Cosimulation block defaults to relative timing mode for
cosimulation. For more on relative timing mode, see “Relative Timing
Mode” on page 7-17.

= In absolute units (such as milliseconds or nanoseconds). In this case, the
cosimulation is said to operate in absolute timing mode. For more on
absolute timing mode, see “Absolute Timing Mode” on page 7-23.

For more on relative and absolute time, see “Understanding the
Representation of Simulation Time” on page 7-14.

¢ By allowing EDA Simulator Link to define the timescale automatically
(with Auto Timescale on the Timescales pane)

When you allow the link software to define the timing relationship, it
attempts to set the timescale factor between the HDL simulator and
Simulink to be as close as possible to 1 second in the HDL simulator = 1
second in Simulink. If this setting is not possible, the link product attempts
to set the signal rate on the Simulink model port to the lowest possible
number of HDL simulator ticks.

Configuring the Communication Link in the HDL
Cosimulation Block

You must select shared memory or socket communication (see “Overview to
Cosimulation with MATLAB or Simulink and the HDL Simulator”).

Define the HDL Cosimulation Block Interface for Test Bench Cosimulation

After you decide, configure a block’s communication link with the Connection
pane of the block parameters dialog box (example shown for use with
Discovery).

E! Function Block Parameters: HDL Cosimulation - 0O X

~Simulink and Discovery Cosimulation

Cosimulate hardware components using Discove ry(R) simulators. Inputs from Simulink(R) are applied to HOL signals. Outputs from

this block are driven by HOL signals

Ports Timescales |} Connection

Connection Mode

@ Full Simulation
) Confirm Inte rface Only

() No Connection

[®| The HDL simulator is running on this computer.

Connection method:| Shared Memory |+

Host name: | ericksonmlinux

[%] Show connection info on icon.

(o Lo | e | o0

The following steps guide you through the communication configuration:

1 Determine whether Simulink and the HDL simulator are running on the
same computer. If they are, skip to step 4.

2 Clear the The HDL simulator is running on this computer check
box. (This check box defaults to selected.) Because Simulink and the HDL
simulator are running on different computers, Connection method is
automatically set to Socket.

3 Enter the host name of the computer that is running your HDL simulation
(in the HDL simulator) in the Host name text field. In the Port number
or service text field, specify a valid port number or service for your
computer system. For information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 6-30. Skip to step 5.

3-37

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-38

4 If the HDL simulator and Simulink are running on the same computer,
decide whether you are going to use shared memory or TCP/IP sockets for
the communication channel. For information on the different modes of
communication, see “Overview to Cosimulation with MATLAB or Simulink
and the HDL Simulator”.

If you choose TCP/IP socket communication, specify a valid port number
or service for your computer system in the Port number or service text
field. For information on choosing TCP/IP socket ports, see “Choosing
TCP/IP Socket Ports” on page 6-30.

If you choose shared memory communication, select the Shared memory
check box.

5 If you want to bypass the HDL simulator when you run a Simulink
simulation, use the Connection Mode options to specify what type of
simulation connection you want. Select one of the following options:

¢ Full Simulation: Confirm interface and run HDL simulation (default).

¢ Confirm Interface Only: Check HDL simulator for proper signal
names, dimensions, and data types, but do not run HDL simulation.

e No Connection: Do not communicate with the HDL simulator. The
HDL simulator does not need to be started.

With the second and third options, EDA Simulator Link software does not
communicate with the HDL simulator during Simulink simulation.

6 Click Apply.

The following example dialog box shows communication definitions for an
HDL Cosimulation block. The block is configured for Simulink and the HDL
simulator running on the same computer, communicating in TCP/IP socket
mode over TCP/IP port 4449 (example shown for use with Discovery).

Define the HDL Cosimulation Block Interface for Test Bench Cosimulation

E! Function Block Parameters: HDL Cosimulation |

~Simulink and Discovery Cosimulation

D] %

Cosimulate hardware components using Discovery(R) simulators. Inputs from Simulink{R) are applied to HDL signals. Cutputs from

this block are driven by HOL signals

Timescales Connection l

Connection Mode

@ Full Simulation
() Confirm Interface Only

) No Connection

[] The HDL simulator is running on this computer.

onmecton metnor
Hostnane:

Fort number or service:| 4443

|| Show connection info an icon.

3
1

[oK " Cance| H Help ” Apply

Specifying Pre- and Post-Simulation Tcl Commands
with HDL Cosimulation Block Parameters Dialog Box

Note This section is for ModelSim and Incisive users only. Discovery users
see launchDiscovery for instructions on issuing Tcl commands.

You have the option of specifying Tcl commands to execute before and after
the HDL simulator simulates the HDL component of your Simulink model.
Tcl is a programmable scripting language supported by most HDL simulation
environments. Use of Tcl can range from something as simple as a one-line
puts command to confirm that a simulation is running or as complete as

a complex script that performs an extensive simulation initialization and
startup sequence. For example, you can use the Post- simulation command
field on the Tcl Pane to instruct the HDL simulator to restart at the end of a
simulation run.

3-39

3 Simulating an HDL Component in a Simulink® Test Bench Environment

You can specify the pre-simulation and post-simulation Tcl commands
by entering Tcl commands in the Pre-simulation commands or
Post-simulation commands text fields of the HDL Cosimulation block.

To specify Tcl commands, perform the following steps:

1 Select the Tcl tab of the Block Parameters dialog box. The dialog box
appears as follows (example shown for use with Incisive).

E Function Block Parameters: HDL Cosimulation — O X

i~ Simulink and Incisive C

Cosimulate hardware camponsnis using Incisive (R simulators. Inputs from Simulink(R) are appled to HOL signak. Outputs fom this black are driven by
HDL signaks.

[Ports [Chcks | Timsscaks | Connsstion | Tel

Pre-simulation commands:

puts "Running Simulink Cosimulation block."

Fost-simulation commands:

puts "dans"

Lo [o e | o]

The Pre-simulation commands text box includes an puts command for
reference purposes.

2 Enter one or more commands in the Pre-simulation command and
Post-simulation command text boxes. You can specify one Tcl command
per line in the text box or enter multiple commands per line by appending
each command with a semicolon (;), which is the standard Tcl concatenation
operator.

3-40

Define the HDL Cosimulation Block Interface for Test Bench Cosimulation

ModelSim DO Files

Alternatively, you can create a ModelSim DO file that lists Tcl commands
and then specify that file with the ModelSim do command as shown in
the following figure.

E! Function Block Parameters: HDL Cosimulation S|

" Simulink. and ModelSim Cosimulation

Cosimulate hardware components with Model3im[R) simulators. Inputs from Simulink(R] are applied to HOL signals. Outputs from this block are diven by
HOL signals.

Ports I Clocks Timescales Connection Tel

Pre-simulation commands:

do mycosimstartup. do

Post-simulation commands:

puts "done’’

ok Cancel Help Apply

3 Click Apply.

Programmatically Controlling the Block Parameters

One way to control block parameters is through the HDL Cosimulation
block graphical dialog box. However, you can also control blocks by
programmatically controlling the mask parameter values and the running of
simulations. Parameter values can be read using the Simulink get_param
function and written using the Simulink set_param function. All block
parameters have attributes that indicate whether they are:

® Tunable — The attributes can change during the simulation run.

® Evaluated — The parameter string value undergoes an evaluation to
determine its actual value used by the S-Function.

3-41

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-42

The HDL Cosimulation block does not have any tunable parameters; thus,
you get an error if you try to change a value while the simulation is running.
However, it does have a few evaluated parameters.

You can see the list of parameters and their attributes by performing

a right-mouse click on the block, selecting View Mask, and then the
Parameters tab. The Variable column shows the programmatic parameter
names. Alternatively, you can get the names programmatically by selecting
the HDL Cosimulation block and then typing the following commands at
the MATLAB prompt:

>> get_param(gcb, 'DialogParameters’)

Some examples of using MATLAB to control simulations and mask parameter
values follow. Usually, the commands are put into a script or function file
and automatically called by several callback hooks available to the model
developer. You can place the code in any of these suggested locations, or
anywhere you choose:

® Inthe model workspace, for example, View > Model Explorer > Simulink
Root > model_name > Model Workspace > Data Source is MDL-File.

e In a model callback, for example, File > Model Properties > Callbacks.

® A subsystem callback (right-mouse click on an empty subsystem and then

select Block Properties > Callbacks). Many of the EDA Simulator Link
demos use this technique to start the HDL simulator by placing MATLAB
code in the OpenFen callback.

¢ The HDL Cosimulation block callback (right-mouse click on HDL
Cosimulation block, and then select Block Properties > Callbacks).

Example: Scripting the Value of the Socket Number for HDL
Simulator Communication

In a regression environment, you may need to determine the socket number
for the Simulink/HDL simulator connection during the simulation to avoid

collisions with other simulation runs. This example shows code that could
handle that task. The script is for a 32-bit Linux platform.

ttcp_exec = [matlabroot '/toolbox/shared/hdllink/scripts/ttcp_glnx'];

[status, results] = system([ttcp_exec ' -a'l);

Define the HDL Cosimulation Block Interface for Test Bench Cosimulation

if ~s
parsed_result = textscan(results, '%s');
avail_port = parsed_result{1}{2};

else
error(results);

end

set_param('MyModel/HDL Cosimulation', 'CommPortNumber', avail_port);

3-43

3 Simulating an HDL Component in a Simulink® Test Bench Environment

Run a Test Bench Cosimulation Session

In this section...

“Setting Simulink Software Configuration Parameters” on page 3-44
“Determining an Available Socket Port Number” on page 3-46
“Checking the Connection Status” on page 3-46

“Running and Testing a Test Bench Cosimulation Model” on page 3-46

“Avoiding Race Conditions in HDL Simulation with Test Bench
Cosimulation and the EDA Simulator Link HDL Cosimulation Block” on
page 3-50

Setting Simulink Software Configuration Parameters

When you create a Simulink model that includes one or more EDA Simulator
Link Cosimulation blocks, you might want to adjust certain Simulink
parameter settings to best meet the needs of HDL modeling. For example,
you might want to adjust the value of the Stop time parameter in the Solver
pane of the Configuration Parameters dialog box.

You can adjust the parameters individually or you can use the MATLAB
file dspstartup, which lets you automate the configuration process so that
every new model that you create is preconfigured with the following relevant
parameter settings:

Parameter Default Setting
‘SingleTaskRateTransMsg' ‘error'

‘Solver' 'fixedstepdiscrete'
‘SolverMode'’ 'singletasking’
‘StartTime' '0.0'

'StopTime' "inf!'

'FixedStep' 'auto’

‘SaveTime' "off'

3-44

Run a Test Bench Cosimulation Session

Parameter Default Setting
'SaveOutput'’ "off'
'AlgebraicLoopMsg"’ ‘error'

The default settings for SaveTime and SaveOutput improve simulation
performance.

You can use dspstartup by entering it at the MATLAB command line or

by adding it to the Simulink startup.m file. You also have the option of
customizing dspstartup settings. For example, you might want to adjust the
StopTime to a value that is optimal for your simulations, or set SaveTime to
"on" to record simulation sample times.

3-45

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-46

For more information on using and customizing dspstartup, see the Signal
Processing Blockset documentation. For more information about automating
tasks at startup, see the description of the startup command in the MATLAB
documentation.

Determining an Available Socket Port Number
To determine an available socket number use: ttcp -a a shell prompt.

Checking the Connection Status
You can check the connection status by clicking the Update diagram button

@ or by selecting Edit > Update Diagram. If there is a connection error,
Simulink will notify you.

The MATLAB command pingHd1Sim can also be used to check the connection
status. If a -1 is returned, then there is no connection with the HDL simulator.

Running and Testing a Test Bench Cosimulation Model

In general, the last stage of cosimulation is to run and test your model. There
are some steps you must be aware of when changing your model during or
between cosimulation sessions. although your testing methods may vary
depending on which HDL simulator you have, You can review these steps in
“Testing the Cosimulation” on page 3-50.

You can run the cosimulation in one of three ways:

® Through the HDL simulator GUI
¢ With the command-line interface (CLI)
® In batch mode

Cosimulation Using the Simulink and HDL Simulator GUIs

Start the HDL simulator and load your HDL design. For test bench
cosimulation, begin simulation first in the HDL simulator. Then, in Simulink,

| 4
click Simulation > Start or the Start Simulation button u in your

Run a Test Bench Cosimulation Session

Simulink model window. Simulink runs the model and displays any errors
that it detects. You can alternate between the HDL simulator and Simulink
GUIs to monitor the cosimulation results.

For component cosimulation, start the simulation in Simulink first, then
begin simulation in the HDL simulator.

You can specify "GUI" as the property value for the run mode parameter of
the EDA Simulator Link HDL simulator launch command, but since using the
GUI is the default mode for EDA Simulator Link, it is not necessary to do so.

Cosimulation with Simulink Using the Command Line Interface
(CLI)

Running your cosimulation session using the command-line interface allows
you to interact with the HDL simulator during cosimulation, which can be
helpful for debugging.

To use the CLI, specify "CLI" as the property value for the run mode
parameter of the EDA Simulator Link HDL simulator launch command.

Caution Close the terminal window by entering "quit -f" at the command
prompt. Do not close the terminal window by clicking the "X" in the upper
right-hand corner. This causes a memory-type error to be issued from the
system. This is not a bug with EDA Simulator Link but just the way the
HDL simulator behaves in this context.

You can type CTRL+C to interrupt and terminate the simulation in the HDL
simulator but this action also causes the memory-type error to be displayed.

Specifying CLI mode with nclaunch (for use with Cadence Incisive)

Issue the nclaunch command with "CLI" as the runmode property value, as
follows (example entered into the MATLAB editor):

tclemd = { ['cd ',unixprojdir],...

['exec ncvlog -linedebug ',unixsrcfilel],...
‘exec ncelab -access +wc work.inverter_vl',...

3-47

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-48

"hdlsimulink -gui work.inverter_vl'

b

nclaunch('tclstart',tclcmd, 'runmode', 'CLI");

Specifying CLI mode with vsim (for use with Mentor Graphics
ModelSim)

Issue the vsim command with "CLI" as the runmode property value, as follows
(example entered into the MATLAB editor):

tclemd = {'vlib work',...
'vlog addone_vlog.v add_vlog.v top_frame.v',...
'vsimulink top =socket 5002'};

vsim('tclstart',tclcmd, 'runmode', 'CLI"');

Specifying CLI mode with launchDiscovery (for use with Synopsys
Discovery)

Issue the launchDiscovery command with "CLI" as the RunMode parameter,
as follows:

pv = launchDiscovery(

'LinkType', 'Simulink’,

langParam, 'vliog',

'TopLevel', ‘gainx2',

'"RunMode ', 'CLI',

'PreSimTcl', {'force clk 0 O, 1 1 -repeat 2'},
"AccFile', [srcbase '/gainx2.pli_acc.tab']

You can see the CLI method of cosimulation in action in the Simple Gain
Block demo.

Cosimulation with Simulink Using Batch Mode

Running your cosimulation session in batch mode allows you to keep the

process in the background, reducing demand on memory by disengaging the
GUL

Run a Test Bench Cosimulation Session

To use the batch mode, specify "Batch" as the property value for the run mode
parameter of the EDA Simulator Link HDL simulator launch command.
After you issue the EDA Simulator Link HDL simulator launch command
with batch mode specified, start the simulation in Simulink. To stop the
HDL simulator before the simulation is completed, issue the breakHd1Sim
command.

Specifying Batch mode with nclaunch (for use with Cadence Incisive)

Issue the nclaunch command with "Batch" as the runmode parameter, as
follows:

nclaunch('tclstart',manchestercmds, 'runmode', 'Batch')

You can also set runmode to "Batch with Xterm", which starts the HDL
simulator in the background but shows the session in an Xterm.

Specifying Batch mode with vsim (for use with Mentor Graphics
ModelSim)

On Windows, specifying batch mode causes ModelSim to be run in a
non-interactive command window. On Linux, specifying batch mode causes
Modelsim to be run in the background with no window.

Issue the vsim command with "Batch" as the runmode parameter, as follows:
>> vsim('tclstart',manchestercmds, 'runmode', 'Batch')

Specifying Batch mode with launchDiscovery (for use with Synopsys
Discovery)

Issue the launchDiscovery command with "Batch" as the RunMode
parameter, as follows:

pv = launchDiscovery(

'LinkType', 'Simulink’,

langParam, 'vliog',

'TopLevel', 'gainx2',

'"RunMode ', 'Batch',

'PreSimTcl', {'force clk 0 0, 1 1 -repeat 2'},
'"AccFile', [srcbase '/gainx2.pli_acc.tab']

3-49

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-50

You can also set RunMode to "Batch with Xterm", which starts the HDL
simulator in the background but shows the session in an Xterm.

You can see the batch mode method of cosimulation in action in the Simple
Gain Block demo. View the last section, “Running a Fully Batch-Mode
Cosimulation for Regressions”, for a demonstration of how to run Simulink
in the background as well.

Testing the Cosimulation

If you wish to reset a clock during a cosimulation, you can do so in one of
these ways:

* By entering HDL simulator force commands at the HDL simulator
command prompt

¢ (ModelSim and Incisive users only) By specifying HDL simulatorforce
commands in the Post- simulation command text field on the Tcl pane
of the EDA Simulator Link Cosimulation block parameters dialog box.

See also “Driving Clocks, Resets, and Enables” on page 7-29.
If you change any part of the Simulink model, including the HDL
Cosimulation block parameters, update the diagram to reflect those changes.

You can do this update in one of the following ways:

e Rerun the simulation

2

® (Click the Update diagram button

* Select Edit > Update Diagram

Avoiding Race Conditions in HDL Simulation with Test
Bench Cosimulation and the EDA Simulator Link HDL
Cosimulation Block

In the HDL simulator, you cannot control the order in which clock signals
(rising-edge or falling-edge) defined in the HDL Cosimulation block (or
for Discovery users, defined with launchDiscovery) are applied, relative
to the data inputs driven by these clocks. If you are careful to ensure the

Run a Test Bench Cosimulation Session

relationship between the data and active edges of the clock, you can avoid race
conditions that could create nondeterministic cosimulation results.

For more on race conditions in hardware simulators, see “Avoiding Race
Conditions in HDL Simulators” on page 7-2.

3-51

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-52

Tutorial — Verifying an HDL Model Using Simulink, the
HDL Simulator, and the EDA Simulator Link Software

In this section...

“Tutorial Overview” on page 3-52

“Developing the VHDL Code” on page 3-53

“Compiling the VHDL File” on page 3-54

“Creating the Simulink Model” on page 3-55

“Setting Up ModelSim for Use with Simulink” on page 3-65

“Loading Instances of the VHDL Entity for Cosimulation with Simulink”
on page 3-65

“Running the Simulation” on page 3-67

“Shutting Down the Simulation” on page 3-70

Tutorial Overview

This chapter guides you through the basic steps for setting up an EDA
Simulator Link session that uses Simulink and the HDL Cosimulation

block to verify an HDL model. The HDL Cosimulation block cosimulates a
hardware component by applying input signals to and reading output signals
from an HDL model under simulation in ModelSim. The HDL Cosimulation
block supports simulation of either VHDL or Verilog models. In the tutorial in
this section, you will cosimulate a simple VHDL model.

Note This tutorial is specific to ModelSim users; however, much of the
process will be the same for Incisive and Discovery users.

Using the invertercmds.m File

Included with your EDA Simulator Link installation

is the file invertercmds.m, located in the folder
matlabroot/toolbox/edalink/extensions/modelsim/modelsimdemos. The
returned cell array can be passed as parameters (emd’) to vsimulink. These

Tutorial — Verifying an HDL Model Using Simulink®, the HDL Simulator, and the EDA Simulator Link™ Software

parameters, when used with the vsimulink command, launch ModelSim
and build the VHDL source file created in “Developing the VHDL Code”
on page 1-49.

Use of this file is not required. It is provided only for your convenience. You
may complete each step manually and forego using this file, if you so choose.

Developing the VHDL Code

A typical Simulink and ModelSim scenario is to create a model for a specific
hardware component in ModelSim that you later need to integrate into a
larger Simulink model. The first step 1s to design and develop a VHDL model
in ModelSim. In this tutorial, you use ModelSim and VHDL to develop a
model that represents the following inverter:

..10101000 —sin_§&

< OM...O]O]OH]

The VHDL entity for this model will represent 8-bit streams of input and
output signal values with an IN port and OUT port of type STD_LOGIC_VECTOR.
An input clock signal of type STD_LOGIC will trigger the bit inversion process
when set.

Perform the following steps:
1 Start ModelSim
2 Change to the writable folder MyPlayArea, which you may have created for
another tutorial. If you have not created the folder, create it now. The
folder must be writable.
ModelSim>cd C:/MyPlayArea

3 Open a new VHDL source edit window.

4 Add the following VHDL code:

3-53

3 Simulating an HDL Component in a Simulink® Test Bench Environment

5 Save the file to inverter.vhd.

Compiling the VHDL File

This section explains how to set up a design library and compile
inverter.vhd, as follows:

1 Verify that the file inverter.vhd is in the current folder by entering the
1s command at the ModelSim command prompt.

2 Create a design library to hold your compilation results. To create the
library and required _info file, enter the vlib and vmap commands as

follows:
ModelSim> v1ib work
ModelSim> vmap work work

If the design library work already exists, ModelSim does not overwrite the
current library, but displays the following warning:

** Warning: (v1lib-34) Library already exists at "work".

Note You must use the ModelSim File menu or vlib command to create
the library folder to ensure that the required _info file is created. Do not
create the library with operating system commands.

3 Compile the VHDL file. One way of compiling the file is to click the
file name in the project workspace and select Compile > Compile All.
Another alternative is to specify the name of the VHDL file with the vcom

command, as follows:

ModelSim> vcom inverter.vhd
If the compilations succeed, informational messages appear in the

command window and the compiler populates the work library with the
compilation results.

3-54

Tutorial — Verifying an HDL Model Using Simulink®, the HDL Simulator, and the EDA Simulator Link™ Software

& Transcript

ModelSim= v1ibk work -
ModelSim> vmap work work

Copving U:\share\apps\HDLTools\ModelSim\modelsim-6.5-tnw-001\model tech\win3a2/. ./
modelsim.inl to modelsim.ini

Modifying modelsim.ind

** Warning: Copied U:\share\apps‘\HDLIccls\ModelSim\modelsim-6.5-tmw-001\modeltec
h\win32/../modelsim.ini to modelsim.ini.

Updated modelsim.ini.

ModelSim= voom inverter.vhd

Model Technology ModelSim SE weom 6.5 Compiler 2009.01 Jan 22 2009

Loading package standard

-- Loading package std logic 1164

—— Compiling entity inverter

—- Conpiling architecture behavioral of inverter

ModelSim = =

Instead of compiling manually, you may choose to use the invertercmds.m
file. See “Using the invertercmds.m File” on page 3-52.

Creating the Simulink Model

Now create your Simulink model. For this tutorial, you create a simple
Simulink model that drives input into a block representing the VHDL inverter
you coded in “Developing the VHDL Code” on page 1-49 and displays the
inverted output.

Start by creating a model, as follows:

1 Start MATLAB, if it is not already running. Open a new model window.
Then, open the Simulink Library Browser.

2 Drag the following blocks from the Simulink Library Browser to your
model window:

¢ Constant block from the Simulink Source library
e HDL Cosimulation block from the EDA Simulator Link block library
¢ Display block from the Simulink Sink library

Arrange the three blocks in the order shown in the following figure.

3-55

3 Simulating an HDL Component in a Simulink® Test Bench Environment

T

ModelSim 8-
b e B —

Simulator sig2 Drisplay

Canstant

HOL Casimulation

Next, configure the Constant block, which is the model’s input source, by
performing the following actions:

1 Double-click the Constant block icon to open the Constant block parameters
dialog box. Enter the following parameter values in the Main pane:

e Constant value: 0
e Sample time: 10

Later you can change these initial values to see the effect various sample
times have on different simulation runs.

The dialog box should now appear as follows.

3-56

Tutorial — Verifying an HDL Model Using Simulink®, the HDL Simulator, and the EDA Simulator Link™ Software

E! Source Block Parameters: Constant x|

Constant

Output the constant specified by the 'Constant value' parameter. If
'Constant value' is a vector and 'Interpret vector parameters as 1-D' is
on, treat the constant value as a 1-D array. Otherwise, output a matrix
with the same dimensions as the constant value.

Main | Signal Aftributes

Constant value:

o

¥ Interpret vector parameters as 1-D

Sampling mode: |Sample based j

Sample time:

[10

9 | oK I Cancel Help

2 Click the Signal Attributes tab. The dialog box now displays the Output
data type mode menu.

Select uint8 from the Output data type mode menu. This data type
specification is supported by EDA Simulator Link software without the
need for a type conversion. It maps directly to the VHDL type for the
VHDL port sin, STD_LOGIC_VECTOR(7 DOWNTO 0).

The dialog box should now appear as follows.

3-57

3 Simulating an HDL Component in a Simulink® Test Bench Environment

E! Source Block Parameters: Constant x|

Constant

Output the constant specified by the 'Constant value' parameter. If
'Constant value' is a vector and 'Interpret vector parameters as 1-D' is
on, treat the constant value as a 1-D array. Otherwise, output a matrix
with the same dimensions as the constant value.

Main Signal Attributes |

Output minimum: Output maximum:

[& [8!

Output data type: | uint8 j >> |

™ Lock output data type setting against changes by the fixed-point tools

9 oK I Cancel Help

3 Click OK. The Constant block parameters dialog box closes and the value
in the Constant block icon changes to 0.

Next, configure the HDL Cosimulation block, which represents the inverter
model written in VHDL. Start with the Ports pane, by performing the
following actions:

1 Double-click the HDL Cosimulation block icon. The Block Parameters
dialog box for the HDL Cosimulation block appears. Click the Ports tab.

2 In the Ports pane, select the sample signal /top/sig1 from the signal list
in the center of the pane by double-clicking on 1it.

3 Replace the sample signal path name /top/sig1 with /inverter/sin.
Then click Apply. The signal name on the HDL Cosimulation block
changes.

4 Similarly, select the sample signal /top/sig2. Change the Full HDL
Name to /inverter/sout. Select Output from the I/O Mode list. Change
the Sample Time parameter to 10. Then click Apply to update the list.

3-58

Tutorial — Verifying an HDL Model Using Simulink®, the HDL Simulator, and the EDA Simulator Link™ Software

5 Select the sample signal /top/sig3. Click the Delete button. The signal is
now removed from the list.

The Ports pane should appear as follows.

E! Function Block Parameters: HDL Cosimulation x|

’rsimulink and ModelSim Cosimulation

Cosimulate hardware components with ModelSim{R) simulators. Inputs from Simulink{R) are applied to HDL signals. Outputs from this block are driven
by HDL signals.

Ports | Clocks I Timescales Connection | Td I

™ Enable direct feedthrough for HDL design with pure combinational datapath

Auto Fill | Use the ‘Auto Fill' button to automatically create the signal interface from a specified HDL companent instance.
Full HDL N I/0 Mod s e Data T fractien
sme 4 ® | Time |YS%® “YP® |r1ongen

New |
Jinverter/sin Input

=||znheriffInneric v|Irheric
Delete | finverter/sout cutput ¥ 10|Innerit | Inheric

Up |
Down |

OK | Cancel | Help | Apply |

Now configure the parameters of the Connection pane by performing the
following actions:

1 Click the Connection tab.
2 Leave Connection Mode as Full Simulation.

3 Select socket from the Connection method list. This option specifies
that Simulink and ModelSim will communicate via a designated TCP/IP
socket port. Observe that two additional fields, Port number or service
and Host name, are now visible.

3-59

3 Simulating an HDL Component in a Simulink® Test Bench Environment

Note that, because The HDL simulator is running on this computer
option option is selected by default, the Host name field is disabled. In
this configuration, both Simulink and ModelSim execute on the same
computer, so you do not need to enter a remote host system name.

4 In the Port number or service text box, enter socket port number 4449
or, if this port is not available on your system, another valid port number
or service name. The model will use TCP/IP socket communication to link
with ModelSim. Note what you enter for this parameter. You will specify
the same socket port information when you set up ModelSim for linking
with Simulink.

The Connection pane should appear as follows.

I Function Block Parameters: inverter x|

" Simulink and MadelSim Cosimulation

Cosimulate hardware components with MadelSim(R) simulators. [nputs from Simulink(R] are applied to HDL signals. Outputs fram thiz block are driven by
HOL signals.

Puorts I Clocks Timescales Connection | Tcll

Connection Mode

& Full Simulation

" Confirm Interface Only

€~ No Connection

¥ The HOL simulator is running on this computer.

Connection method: ISDcket - l
Hast name: Ihornerj
Port number or service: |4449

™ Show connection infa on icon.

ok Cancel Help Apply

5 Click Apply.
Now configure the Clocks pane by performing the following actions:

1 Click the Clocks tab.

2 Click the New button. A new clock signal with an empty signal name
is added to the signal list.

3-60

Tutorial — Verifying an HDL Model Using Simulink®, the HDL Simulator, and the EDA Simulator Link™ Software

3 Double-click on the new signal name to edit. Enter the signal path
/inverter/clk. Then select Rising from the Edge list. Set the Period
parameter to 10.

4 The Clocks pane should appear as follows.

E! Function Block Parameters: inverter x|

" Simulink. and MaodelSim Cosimulation

Cozimulate hardware components with ModelSim(R] simulators. [nputs from Simulink(R) are applied to HOL signals. Outputs from thiz block are diven by
HOL signals.

Forts Clocks Timescales Connection I TC|I

Y'ou can generate vour HOL clocks in this tab. The edge specifies the active edge in your HDL design. In order to avoid race conditions between the
generated clock and the input and output signals, the first active edge will be placed at time Period/2. Other options to generate clocks, resets, and
enables include:

Jze Simulink blocks and add the signals to the Ports tab,

Create waveforms uzsing HOL simulatar Tel commands in the Tel tab.

* Code them in HOL.

Full HDL Name Active Period
Clock Edge
Mew Ainverter-sclk Ri=zing x| 10
Delete
Up
[avan
akK Cancel Help Spply

5 Click Apply.

Next, enter some simple Tcl commands to be executed before and after
simulation, as follows:

1 Click the Tel tab.

2 In the Pre-simulation commands text box, enter the following Tcl
command:

echo "Running inverter in Simulink!"

3 In the Post-simulation commands text box, enter

echo "Done"

3-61

3 Simulating an HDL Component in a Simulink® Test Bench Environment

The Tecl pane should appear as follows.

E! Function Block Parameters: inverter S|

Simulink. and ModelSim Cosimulation
’7 Cosimulate hardware components with Model3im[R) simulators. Inputs from Simulink(R] are applied to HOL signals. Outputs from this block are diven by

HOL signals.

Ports I Clocks Timescales Connection Tel

Pre-simulation commands:

echo "Running inverter in Simulink!"

Post-simulation commands:

echo "Done"

ok Cancel Help Apply

4 Click Apply.

Next, view the Timescales pane to make sure it is set to its default

parameters, as follows:

1 Click the Timescales tab.

2 The default settings of the Timescales pane are shown in the following
figure. These settings are required for correct operation of this example.
See “Understanding the Representation of Simulation Time” on page 7-14

for further information.

3-62

Tutorial — Verifying an HDL Model Using Simulink®, the HDL Simulator, and the EDA Simulator Link™ Software

E! Function Block Parameters: HDL Cosimulation x|

Sirnulink and ModelSim Cosirmulation

Cosimulate hardware components with ModelSim(R) simulatars. Inputs from Simulink{R) are applied to HOL signals. Outputs
from this block are driven by HDL signals.

Ports | Clocks — Timescales | Connection | Tcll

Relate Simulink sarmple times to the HOL simulation time by specifying a scalefactor, A 'tick' is the HOL simulator time resolution.
The Simulink sample tirme multiplied by the scalefactor must be a whole number of HOL ticks.

Auto Timesca\el Automatically calculates a timescale. Click on the help button for more infor mation.
1 gecond in Sirmulink carresponds o] 1 ITick j in the HOL simulator

Ok, | Cancel | Help | Apply |

3 Click OK to close the Function Block Parameters dialog box.

The final step is to connect the blocks, configure model-wide parameters, and
save the model. Perform the following actions:

1 Connect the blocks as shown in the following figure.

ModelSim
0 —=in ﬂ sout — I:l
Constant Simulator Display

HDOL Caosimulation

At this point, you might also want to consider adjusting block annotations.

3-63

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-64

2 Configure the Simulink solver options for a fixed-step, discrete simulation;

this is required for correct cosimulation operation. Perform the following

actions:

a Select Configuration Parameters from the Simulation menu in
the model window. The Configuration Parameters dialog box opens,

displaying the Solver options pane.

b Select Fixed-step from the Type menu.

¢ Select Discrete (no continuous states) from the Solver menu.

d Click Apply. The Solver options pane should appear as shown in the

following figure.

#, Configuration Parameters: untitled /Configuration (Active) il
Select: — Simulation tim =
Bk Start time: |0.0 Stop time: |10.0
--Data Import/Export
-~ Optimization -~ Solver options
[=-Diagnostics
- Sample Time Type: Ileed—step j Solver: IDlscrete (no continuous states) j
~Data Validi
ty Fixed-step size (fundamental sample time): Iauto
-~ Type Conversion
—] ~Tasking and sample time options
Compatibility
-~ Madel Referencing Periodic sample time constraint: IUncomstraimed j
~Saving Tasking mede for periodic sample times: j
Hardware Implementa...
--Madel Referencing ™ Automatically handle rate transition for data transfer
- Simulation Target I Higher priority value indicates higher task priority
--Symbols I
-~ Custom Code
=-Real-Time Workshop
- Report
- Comments
Symbols
- Custom Code
- Debug
- Interface |
Q oK I Help | Apply |

e Click OK to close the Configuration Parameters dialog box.

See “Setting Simulink Software Configuration Parameters” on page 3-44

for further information on Simulink settings that are optimal for use

with EDA Simulator Link software.

3 Save the model.

Tutorial — Verifying an HDL Model Using Simulink®, the HDL Simulator, and the EDA Simulator Link™ Software

Setting Up ModelSim for Use with Simulink

You now have a VHDL representation of an inverter and a Simulink model
that applies the inverter. To start ModelSim such that it is ready for use
with Simulink, enter the following command line in the MATLAB Command
Window:

vsim('socketsimulink', 4449)

Note If you entered a different socket port specification when you configured
the HDL Cosimulation block in Simulink, replace the port number 4449 in
the preceding command line with the correct socket port information for your
model. The vsim function informs ModelSim of the TCP/IP socket to use for
establishing a communication link with your Simulink model.

To launch ModelSim, you may choose instead to use the invertercmds.m file.
See “Using the invertercmds.m File” on page 3-52.

Loading Instances of the VHDL Entity for Cosimulation

with Simulink

This section explains how to use the vsimulink command to load an instance
of your VHDL entity for cosimulation with Simulink. The vsimulink
command is an EDA Simulator Link variant of the ModelSim vsim command.
It is made available as part of the ModelSim configuration.

To load an instance of the inverter entity, perform the following actions:

1 Change your input focus to the ModelSim window.

2 If necessary, change your folder to the location of your inverter.vhd file.
For example:

ModelSim> cd C:/MyPlayArea

3 Enter the following vsimulink command:

ModelSim> vsimulink work.inverter

3-65

3 Simulating an HDL Component in a Simulink® Test Bench Environment

ModelSim starts the vsim simulator such that it is ready to simulate entity
inverter in the context of your Simulink model. The ModelSim command
window display should be similar to the following.

ModelSim SE 6.5 ;lglll

File Edit View Compile Simulate Add Transcript Tools Layout Window Help

Layout [5imulate |

W standard standard
W std_logic_1164 std_logic_1.

= Transcript

ModelSim> wsimulink work.inverter

vsin -foreign {simlinkserwver {V:/jobarchive/Adoc/2005_07_28_h22m59324_ job&9935_pass/matl
ab/toolbox/edalink/extensions/modelsim/windows32/1iblfmhdls_ tmwvs.dll} } work.inverter

** Note: (v3im-3812) Design is being optimized...

Loading std.standard

Loeding ieee.std_logic 1164 (body)

Loeding work.inverter(behavicral)#l

Loading V:/jobarchive/Rdoc/2009_07_28_h22m5%324_ job89935_pass/matleb/toolbox/edalink/ext
ensicns/modelsim/windows32/1iblfmhdls_ tmwva.dll

VEIM 8 |

l

|Now: Ons Delta: 0 |s'r|'|:,-’nverter

Instead of loading the entity manually, you may choose to use the
invertercmds.m file. See “Using the invertercmds.m File” on page 3-52.

3-66

Tutorial — Verifying an HDL Model Using Simulink®, the HDL Simulator, and the EDA Simulator Link™ Software

Running the Simulation

This section guides you through a scenario of running and monitoring a
cosimulation session.

Perform the following actions:

1 Open and add the inverter signals to a wave window by entering the
following ModelSim command:

VSIM n> add wave /inverter/*

The following wave window appears.

—ipix]

File Edit Wwiew Add Format Tools \Window

- =
| @4 «= = e H RS BT D
LE®EHNL LA | BBDD|| N B gw WJ@;GA%@&&

B jinverter/sin UUULLUUY (=]
B finverterfsout UUUULULU
4 finverter fdk
-
q I3 KT 3 [IE0] o |
| 0ns to 999 ns | Mow: Ons Delta: 0 y:

2 Change your input focus to your Simulink model window.

3-67

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3 Start a Simulink simulation. The value in the Display block changes to
255. Also note the changes that occur in the ModelSim wave window. You
might need to zoom in to get a better view of the signal data.

_iixi
File Edit View Add Format Toolz Window

N-@E 8

@4« EF[10 ELEIEEE B D BB
N T @“‘@y:
0y i

z|araeaan

00000000
11111111 UUUUUUULY (11111919

| 0nsto 32 ns | Mow: 0ns Delta: 0

4 In the Simulink model, change Constant value to 255, save the model,
and start another simulation. The value in the Display block changes to 0
and the ModelSim wave window is updated as follows.

3-68

Tutorial — Verifying an HDL Model Using Simulink®, the HDL Simulator, and the EDA Simulator Link™ Software

I i

File Edit WView Add Format Toolz Window

B
dew@» B 1ﬂnns:|llll¢@ BT
| 2-ag @JF@J axa*

11111111
00000000

| 0nsto 32 ns | Mow: Ons Delta: 0 i

5 In the Simulink Model, change Constant value to 2 and Sample time
to 20 and start another simulation. This time, the value in the Display
block changes to 253 and the ModelSim wave window appears as shown in
the following figure.

3-69

3 Simulating an HDL Component in a Simulink® Test Bench Environment

3-70

Il x4

File Edit View Add Format Tools Window

Jf@w@» ER[100 =S ELEEEEE | B2 O 4P B

NN axa« J@m%@m

00000010
11111101

|0nsho33ns

| MNow: 0ns Delta: 0 y:

Note the change in the sample time in the wave window.

Shutting Down the Simulation

This section explains how to shut down a simulation in an orderly way, as
follows:

1 In ModelSim, stop the simulation by selecting Simulate > End
Simulation.

2 Quit ModelSim.

3 Close the Simulink model window.

Replacing an HDL
Component with a Simulink

Algorithm

® “Overview to Component Simulation with Simulink” on page 4-2
e “Code an HDL Component for Use with Simulink Applications” on page 4-8

e “Create Simulink Model for Component Cosimulation with the HDL
Simulator” on page 4-11

¢ “Launch HDL Simulator for Component Cosimulation with Simulink” on
page 4-13

¢ “Add the HDL Cosimulation Block to the Simulink Component Model”
on page 4-15

® “Define the HDL Cosimulation Block Interface for Component Simulation”
on page 4-17

¢ “Run a Component Cosimulation Session” on page 4-42

4 Replacing an HDL Component with a Simulink Algorithm

4-2

Overview to Component Simulation with Simulink

In this section...

“Understanding How the HDL Simulator and Simulink Software
Communicate Using EDA Simulator Link For Component Simulation”
on page 4-2

“HDL Cosimulation Block Features for Component Simulation” on page 4-4

“Workflow for Using Simulink as HDL Component” on page 4-6

Understanding How the HDL Simulator and Simulink
Software Communicate Using EDA Simulator Link For
Component Simulation

When you link the HDL simulator with a Simulink application, the
simulator functions as the server. As the following diagram shows, the HDL
Cosimulation blocks inside the Simulink model accept signals from the HDL
module under simulation in the HDL simulator via the output ports on the
Ports panes and return data via the input ports on the Ports panes.

Overview to Component Simulation with Simulink

HDL Simulator

Simulink Model
g g
g g
i — R—
£ HDL Cosimulation Block 1 > E
g > &
=
5 5
#
] 2
E—1 HOL Cosimulation Block mn - =
S g
2 £

Understanding How Simulink Drives Cosimulation Signals

Although you can bind the output ports of an HDL Cosimulation block to
any signal in an HDL model hierarchy, you must use some caution when
connecting signals to input ports. Ensure that the signal you are binding to
does not have other drivers. If it does, use resolved logic types; otherwise
you may get unpredictable results.

If you need to use a signal that has multiple drivers and it is resolved (for
example, it is of VHDL type STD_LOGIC) , Simulink applies the resolution
function at each time step defined by the signal’s Simulink sample rate.
Depending on the other drivers, the Simulink value may or may not get
applied. Furthermore, Simulink has no control over signal changes that occur
between its sample times.

4-3

4 Replacing an HDL Component with a Simulink Algorithm

Note Verify that signals used in cosimulation have read/write access. You
can check read/write access through the HDL simulator—see HDL simulator
documentation for details. For Discovery users, a tab file is included in the
simulation via the required launchDiscovery property "AccFile".

This rule applies to all signals on the Ports, Clocks, and Tecl panes and to
signals added to the model in any other manner.

Handling Multirate Signals During Component Cosimulation
EDA Simulator Link software supports the use of multirate signals, signals
that are sampled or updated at different rates, in a single HDL Cosimulation
block. An HDL Cosimulation block exchanges data for each signal at the
Simulink sample rate for that signal. For input signals, an HDL Cosimulation
block accepts and honors all signal rates.

The HDL Cosimulation block also lets you specify an independent sample
time for each output port. You must explicitly set the sample time for each
output port, or accept the default. Using this setting lets you control the
rate at which Simulink updates an output port by reading the corresponding
signal from the HDL simulator.

Interfacing with Continuous Time Signals

Use the Simulink Zero-Order Hold block to apply a zero-order hold (ZOH) on
continuous signals that are driven into an HDL Cosimulation block.

HDL Cosimulation Block Features for Component
Simulation

The EDA Simulator Link HDL Cosimulation Block links hardware
components that are concurrently simulating in the HDL simulator to the rest
of a Simulink model.

You can link Simulink and the HDL simulator in two possible ways:

® As a single HDL Cosimulation block fitted into the framework of a larger
system-oriented Simulink model.

Overview to Component Simulation with Simulink

® As a Simulink model made up of a collection of HDL Cosimulation blocks,
each representing a specific hardware component.

The block mask contains panels for entering port and signal information,
setting communication modes, adding clocks (Incisive and ModelSim only),
specifying pre- and post-simulation Tcl commands (Incisive and ModelSim
only), and defining the timing relationship.

After you code one of your model’s components in VHDL or Verilog and
simulate it in the HDL simulator environment, you integrate the HDL
representation into your Simulink model as an HDL Cosimulation block.
There is one block for each supported HDL simulator. These blocks are
located in the Simulink Library, within the EDA Simulator Link block library.
As an example, the block for use with Mentor Graphics ModelSim is shown in
the next figure.

Modelsim '8
))
sig1 =)
Simulator sig2 b

You configure an HDL Cosimulation block by specifying values for parameters
in a block parameters dialog box. The HDL Cosimulation block parameters
dialog box consists of tabbed panes that specify the following information:

¢ Ports Pane: Block input and output ports that correspond to signals,
including internal signals, of your HDL design, and an output sample time.

¢ Connection Pane: Type of communication and related settings to be used
for exchanging data between simulators.

¢ Timescales Pane: The timing relationship between Simulink software
and the HDL simulator.

® Clocks Pane (Incisive and ModelSim only): Optional rising-edge and
falling-edge clocks to apply to your model.

e Tcl Pane (Incisive and ModelSim only): Tcl commands to run before and
after a simulation.

4-5

4 Replacing an HDL Component with a Simulink Algorithm

Workflow for Using Simulink as HDL Component

The following workflow shows the steps necessary to cosimulate an HDL
design that tests the algorithm being modeled with the Simulink software.

Create, compile, and elaborate
HDL design

[y

v

Design algorithm and model
algorithm in Simulink ~

|

Launch HDL simulator for use
with MATLAB and Simulink and
load EDA Simulator Link
libraries

Add one or more HDL
Cosimulation blocks to provide
communication between
simulators

A

Define HDL Cosimulation block
interfaces

A

Start simulation in Simulink

3
Run simulation in HDL simulator

Modify
HDL code
Yes and try
again

No

Need to Need to

Model run

as reconfigure modify
HDL Cosim model?
ted?
expecte block?

The workflow is as follows:

4-6

Overview to Component Simulation with Simulink

1 Create, compile, and elaborate HDL design. See “Code an HDL Component
for Use with Simulink Applications” on page 4-8.

2 Design algorithm and model algorithm in Simulink. See “Create Simulink
Model for Component Cosimulation with the HDL Simulator” on page 4-11.

3 Launch HDL simulator for use with MATLAB and Simulink and load EDA
Simulator Link libraries. See “Launch HDL Simulator for Component
Cosimulation with Simulink” on page 4-13.

4 Add one or more HDL Cosimulation blocks to provide communication
between simulators. See “Add the HDL Cosimulation Block to the Simulink
Component Model” on page 4-15.

5 Define HDL Cosimulation block interfaces. See “Define the HDL
Cosimulation Block Interface for Component Simulation” on page 4-17.

6 Start simulation in Simulink. See “Run a Component Cosimulation
Session” on page 4-42.

7 Run cosimulation in HDL simulator. See “Run a Component Cosimulation
Session” on page 4-42.

4 Replacing an HDL Component with a Simulink Algorithm

4-8

Code an HDL Component for Use with Simulink
Applications

In this section...

“Overview to Coding HDL Modules for Simulink Component Simulation”
on page 4-8

“Specifying Port Direction Modes in the HDL Module for Component
Simulation” on page 4-8

“Specifying Port Data Types in the HDL Module for Component Simulation”
on page 4-9

“Compiling and Elaborating the HDL Design for Component Simulation”
on page 4-10

Overview to Coding HDL Modules for Simulink
Component Simulation

The EDA Simulator Link interface passes all data between the HDL simulator
and Simulink as port data. The EDA Simulator Link software works with
any existing HDL module. However, when you code an HDL module that is
targeted for Simulink verification, you should consider the types of data to be
shared between the two environments and the direction modes.

Specifying Port Direction Modes in the HDL Module
for Component Simulation

In your module statement, you must specify each port with a direction mode
(input, output, or bidirectional). The following table defines these three modes.

Code an HDL Component for Use with Simulink Applications

Use VHDL Use Verilog | For Ports That...

Mode... Mode...

IN input Represent signals that can be driven by a
MATLAB function

ouT output Represent signal values that are passed to
a MATLAB function

INOUT inout Represent bidirectional signals that can
be driven by or pass values to a MATLAB
function

Specifying Port Data Types in the HDL Module for
Component Simulation

This section describes how to specify data types compatible with MATLAB
for ports in your HDL modules. For details on how the EDA Simulator Link

interface converts data types for the MATLAB environment, see “Performing
Data Type Conversions” on page 7-5.

Note If you use unsupported types, the EDA Simulator Link software issues
a warning and ignores the port at run time. For example, if you define your
interface with five ports, one of which is a VHDL access port, at run time,
then the interface displays a warning and your code sees only four ports.

Port Data Types for VHDL Entities

In your entity statement, you must define each port that you plan to test with
MATLAB with a VHDL data type that is supported by the EDA Simulator
Link software. The interface can convert scalar and array data of the
following VHDL types to comparable MATLAB types:

e STD_LOGIC, STD_ULOGIC, BIT, STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR,
and BIT_VECTOR

* INTEGER and NATURAL

* REAL

4 Replacing an HDL Component with a Simulink Algorithm

4-10

® TIME

® Enumerated types, including user-defined enumerated types and
CHARACTER

The interface also supports all subtypes and arrays of the preceding types.

Note The EDA Simulator Link software does not support VHDL extended
identifiers for the following components:

® Port and signal names used in cosimulation

e Enum literals when used as array indices of port and signal names used
in cosimulation

However, the software does support basic identifiers for VHDL.

Port Data Types for Verilog Modules. In your module definition, you must
define each port that you plan to test with MATLAB with a Verilog port data
type that is supported by the EDA Simulator Link software. The interface can
convert data of the following Verilog port types to comparable MATLAB types:
® reg

® integer

® wire

Note EDA Simulator Link software does not support Verilog escaped
identifiers for port and signal names used in cosimulation. However, it does
support simple identifiers for Verilog.

Compiling and Elaborating the HDL Design for
Component Simulation

Refer to the HDL simulator documentation for instruction in compiling and
elaborating the HDL design.

Create Simulink Model for Component Cosimulation with the HDL Simulator

Create Simulink Model for Component Cosimulation with
the HDL Simulator

In this section...

“Creating the Simulink Model for Component Cosimulation” on page 4-11

“Running and Testing a Component Hardware Model in Simulink” on page
4-11

“Adding a Value Change Dump (VCD) File to Component Model (Optional)”
on page 4-11

Creating the Simulink Model for Component
Cosimulation

For the most part, there is nothing different about creating a Simulink model
to act as an HDL component than there is from creating a Simulink model
to use as a test bench. When using Simulink as a component, you may have
multiple HDL Cosimulation blocks rather than a single HDL Cosimulation
block, though there’s no limitation on how many HDL Cosimulation blocks
you may use in either situation.

Create a Simulink test bench model by adding Simulink blocks from the
Simulink Block libraries. For help with creating a Simulink model, see the
Simulink documentation.

Running and Testing a Component Hardware Model
in Simulink

If you design a Simulink model first, run and test your model thoroughly
before replacing or adding hardware model components as EDA Simulator
Link Cosimulation blocks.

Adding a Value Change Dump (VCD) File to
Component Model (Optional)

You might want to add a VCD file to log changes to variable values during
a simulation session. See Chapter 5, “Recording Simulink Signal State

4-11

4 Replacing an HDL Component with a Simulink Algorithm

Transitions for Post-Processing” for instructions on adding the To VCD File
block.

4-12

Launch HDL Simulator for Component Cosimulation with Simulink

Launch HDL Simulator for Component Cosimulation with
Simulink

In this section...
“Starting the HDL Simulator from MATLAB” on page 4-13

“Loading an Instance of an HDL Module for Component Cosimulation”
on page 4-13

Starting the HDL Simulator from MATLAB

The options available for starting the HDL simulator for use with Simulink
vary depending on whether you run the HDL simulator and Simulink on
the same computer system.

If both tools are running on the same system, start the HDL simulator
directly from MATLAB by calling the MATLAB function vsim, nclaunch, or
launchDiscovery. Alternatively, you can start the HDL simulator manually
and load the EDA Simulator Link libraries yourself. Either way, see “Using
EDA Simulator Link with HDL Simulators ”.

Loading an Instance of an HDL Module for
Component Cosimulation

Incisive users load an instance of the HDL module for cosimulation using the
hdlsimulink function. ModelSim users do the same using the vsimulink
function. Discovery users load the instance using launchDiscovery.

Example of loading HDL Module instance — Incisive users

After you start the HDL simulator from MATLAB, load an instance of an
HDL module for cosimulation with the function hdlsimulink. Issue the
command for each instance of an HDL module in your model that you want to

cosimulate.

For example:

hdlsimulink work.manchester

4-13

4 Replacing an HDL Component with a Simulink Algorithm

Example of loading HDL Module instance — ModelSim users

After you start the HDL simulator from MATLAB, load an instance of an HDL
module for cosimulation with the function vsimulink. Issue the command for
each instance of an HDL module in your model that you want to cosimulate.

For example:

vsimulink work.manchester

Example of loading HDL Module instance — Discovery users

When you start the HDL simulator from MATLAB with the launchDiscovery
command, you can load an instance of the HDL module for cosimulation at
the same time, as shown in this example from the Manchester Receiver demo:

pv = launchDiscovery(...

'LinkType', 'Simulink',
'VerilogFiles', vlogFiles,
'TopLevel', ‘manchester’,
'RunMode ', runMode,
'VlogAnFlags', ‘'+v2k',
'PreSimTcl',

{ 'force manchester.clk 1 0, 0 5 -repeat 10',
'force manchester.enable 1 0', ...
'force manchester.reset 1 0, 0 1000' },
'AccFile', fullfile(demoBase, 'manchester.pli_acc.tab') ..
)5

This command opens a simulation workspace for manchester and displays a
series of messages in the HDL simulator command window as the simulator
loads the packages and architectures for the HDL module.

4-14

Add the HDL Cosimulation Block to the Simulink Component Model

Add the HDL Cosimulation Block to the Simulink
Component Model

Insert HDL Cosimulation Block

After you code one of your model’s components in VHDL or Verilog

and simulate it in the HDL simulator environment, integrate the HDL
representation into your Simulink model as an HDL Cosimulation block by
performing the following steps:

1 Open your Simulink model, if it is not already open.
2 Delete the model component that the HDL Cosimulation block is to replace.

3 In the Simulink Library Browser, click the EDA Simulator Link block
library. You can then select the block library for your supported HDL
simulator. As an example, the HDL Cosimulation block icon for use with
Cadence Incisive is shown below.

HDL Block that has at least one input
- Cosimulation port and one output port.
Incisive - B< [block
sig1 X
: =)
Simulator sig2 b

In each block library, you will see the same To VCD block, shown below.

To VCD File Generates a Value Change Dump
(VCD) file. For information on

3 gimulink.ved using this block, see Chapter 5,
“Recording Simulink Signal State
To YCD File Transitions for Post-Processing”.

4 Copy the HDL Cosimulation block icon from the Library Browser to your
model. Simulink creates a link to the block at the point where you drop
the block icon.

4-15

4 Replacing an HDL Component with a Simulink Algorithm

Connect Block Ports

Connect any HDL Cosimulation block ports to appropriate blocks in your
Simulink model.

¢ To model a sink device, configure the block with inputs only.

¢ To model a source device, configure the block with outputs only.

4-16

Define the HDL Cosimulation Block Interface for Component Simulation

Define the HDL Cosimulation Block Interface for
Component Simulation

Accessing the HDL Cosimulation Block Interface

To open the block parameters dialog box for the HDL Cosimulation block,
double-click the block icon. Simulink displays the following Block Parameters
dialog box (as an example, the dialog box for the HDL Cosimulation block for
use with Cadence Incisive is shown below).

Function Block Parameters: HDL Cosimulation

Simulink and Incisive Cosimulation

Cosimulate hardware components using Incisive(R) simulators. Inputs from Simulink(R) are applied to HDL signals. Outputs
from this block are driven by HDL signals.

Ports l Clocks I Timescales Connection] Tcl]

[” Enable direct feedthrough for HOL design with pure combinational datapath

Auto Fill Use the 'Auto Fll' button to automatically create the signal interface from a specified HDL component
instance.
Full HDL Name 1/0 moge S2UPLE Data Type |Tocblien
Time Length

Delete
Jtop/sig? |Output j Inherit =|Tnherit

10
/top/aig3 Output - 10|Inherit =|Inherit
Down

New
Jtop/aigl Input jlnherl.t Inherit =w|Inherit
Up

oK Cancel Help Apply

4-17

4 Replacing an HDL Component with a Simulink Algorithm

4-18

Discovery Users The dialog box of the HDL Cosimulation for use with
Synopsys Discovery does not contain Tcl or Clocks panes. Alternative
methods for specifying this information can be found on the launchDiscovery
reference page.

Mapping HDL Signals to Block Ports

® “Specifying HDL Signal/Port and Module Paths for Cosimulation” on page
4-19

® “Obtaining Signal Information Automatically from the HDL Simulator”
on page 4-21

¢ “Entering Signal Information Manually” on page 4-28

¢ “Controlling Output Port Directly by Value of Input Port” on page 4-32

The first step to configuring your EDA Simulator Link Cosimulation block is
to map signals and signal instances of your HDL design to port definitions in
your HDL Cosimulation block. In addition to identifying input and output
ports, you can specify a sample time for each output port. You can also specify

a fixed-point data type for each output port.
The signals that you map can be at any level of the HDL design hierarchy.
To map the signals, you can perform either of the following actions:

¢ Enter signal information manually into the Ports pane of the HDL
Cosimulation Block Parameters dialog box (see “Entering Signal
Information Manually” on page 3-30). This approach can be more efficient
when you want to connect a small number of signals from your HDL model
to Simulink.

e Use the Auto Fill button to obtain signal information automatically by
transmitting a query to the HDL simulator. This approach can save
significant effort when you want to cosimulate an HDL model that has
many signals that you want to connect to your Simulink model. However,
in some cases, you will need to edit the signal data returned by the query.
See “Obtaining Signal Information Automatically from the HDL Simulator”
on page 3-23 for details.

Define the HDL Cosimulation Block Interface for Component Simulation

Note Verify that signals used in cosimulation have read/write access. For
higher performance, you want to provide access only to those signals used in
cosimulation. This rule applies to all signals on the Ports, Clocks, and Tecl
panes, and for Discovery users, those created with the launchDiscovery
function (an HDL signal access file is included in the simulation via the
required property "AccFile").

Specifying HDL Signal/Port and Module Paths for Cosimulation

These rules are for signal/port and module path specifications in Simulink.
Other specifications may work but are not guaranteed to work in this or
future releases.

HDL designs generally do have hierarchy; that is the reason for this syntax.
This specification does not represent a file name hierarchy.

Path specifications must follow the rules listed in the following sections:

® “Path Specifications for Simulink Cosimulation Sessions with Verilog Top
Level” on page 3-21

® “Path Specifications for Simulink Cosimulation Sessions with VHDL Top
Level” on page 3-22

Path Specifications for Simulink Cosimulation Sessions with Verilog
Top Level.

¢ Path specification must start with a top-level module name.

e Path specification can include "." or "/" path delimiters, but cannot include
a mixture.

¢ The leaf module or signal must match the HDL language of the top-level

module.

The following examples show valid signal and module path specifications:

top.port_or_sig
/top/sub/port_or_sig
top

4-19

4 Replacing an HDL Component with a Simulink Algorithm

top/sub
top.sub1.sub2

The following examples show invalid signal and module path specifications:

® top.sub/port_or_sig
Why this specification is invalid: You cannot use mixed delimiters.

e :sub:port_or_sig

:sub

Why this specification is invalid: When you use VHDL-specific delimiters
you limit the interoperability with paths when moving between HDL
simulators and between VHDL and Verilog.

Path Specifications for Simulink Cosimulation Sessions with VHDL
Top Level.

e Path specification may include the top-level module name but it is not
required.

e Path specification can include "." or "/" path delimiters, but cannot include
a mixture.

¢ The leaf module or signal must match the HDL language of the top-level
module.

The following examples show valid signal and module path specifications:

top.port_or_sig
/sub/port_or_sig
top

top/sub
top.sub1.sub2

The following examples show invalid signal and module path specifications:

® top.sub/port_or_sig

Why this specification is invalid: You cannot use mixed delimiters.

4-20

Define the HDL Cosimulation Block Interface for Component Simulation

® :sub:port_or_sig

:sub

Why this specification is invalid: When you use VHDL-specific delimiters
you limit the interoperability with paths when moving between HDL
simulators and between VHDL and Verilog.

Obtaining Signal Information Automatically from the HDL
Simulator

The Auto Fill button lets you begin an HDL simulator query and supply a
path to a component or module in an HDL model under simulation in the
HDL simulator. Usually, some change of the port information is required

after the query completes. You must have the HDL simulator running with
the HDL module loaded for Auto Fill to work.

The following example describes the required steps.

Note The example is based on a modified copy of the Manchester Receiver
model, in which all signals were first deleted from the Ports and Clocks
panes.

1 Open the block parameters dialog box for the HDL Cosimulation block.
Click the Ports tab. The Ports pane opens (as an example, the Ports
pane for the HDL Cosimulation block for use with ModelSim is shown
in the illustrations below).

4-21

4 Replacing an HDL Component with a Simulink Algorithm

4-22

E! Function Block Parameters: HDL Cosimulation x|
Simulink and ModelSim Cosimulation
Cosimulate hardware components with ModelSim(R) simulators. Inputs from Simulink(R) are applied to HDL signals. Outputs from this black are driven
by HDL signals.
Ports | Clocks I Timescales Connection | Td I
I Enable direct feedthrough for HDL design with pure combinational datapath
Auto Fill | Use the ‘Auto Fill' button to automatically create the signal interface from a specified HDL component instance.
Full HDL N I/0 Mod Semple D a Frastion
ame vl e | ime ata Type —
New
lunused Input LI InheriijInherit Y| Inherit
Delete |
[
Down |
oK Cancel Help Apply

Tip Delete all ports before performing Auto Fill to ensure that no unused
signal remains in the Ports list at any time.

2 Click the Auto Fill button. The Auto Fill dialog box opens.

) autoril_———TaTEY
Enter full path to component or module instance

Ok Cancel |

Define the HDL Cosimulation Block Interface for Component Simulation

This modal dialog box requests an instance path to a component or module
in your HDL model; here you enter an explicit HDL path into the edit

field. The path you enter is not a file path and has nothing to do with the
source files.

3 In this example, the Auto Fill feature obtains port data for a
VHDL component called manchester. The HDL path is specified as
/top/manchester (path specifications will vary depending on your

HDL simulator; see “Specifying HDL Signal/Port and Module Paths for
Cosimulation” on page 4-19).

) AutoFill =10 x|

Enter full path to component or module instance
ll'tu:upimann:hesteﬂ

Ok Cancel |

4 Click OK to dismiss the dialog box and the query is transmitted.

5 After the HDL simulator returns the port data, the Auto Fill feature enters
it into the Ports pane, as shown in the following figure.

4-23

4 Replacing an HDL Component with a Simulink Algorithm

4-24

E! Function Block Parameters: HDL Cosimulation

Cosimulate hardware companents with ModelSim(R) simulators. Inputs from Simulink{R) are applied to HDL signals. Outputs from this block are driven by HDL

Simulink and ModelSim Cosimulation
’7signas

Ports | Clocks I Timescales I Connection I Td |

™ Enable direct feedthrough for HDL design with pure combinational datapath

Auto Fill | Use the ‘Auto Fill' button to automatically create the signal interface from a specified HDL companent instance.
Full HDL N I/0 Mod: e Data T: Frection
=me = | Time =E2 SYPR |1 ongth
MNew
/top/manchester/samp Input [¥|Inherit Inherit ¥|Inherit
Delete | /top/menchester/clk Input || Inhezit [Inherit | inkeric
Up /top/manchester/enzble |Input *|Inkeric Inherit ¥|Inherit
ftop/manchester/reset Input ¥|Inherit Inherit ¥|Inherit
Do | /top/manchester/data Cutput ~ 1|inheric = |Inheric
ftops/manchester/dvalid Cutput | 1]Inherit *|Inherit
/top/manchester/dclk Cutput * 1| Inherit ¥ ||Inherit
0K Cancel Help | Apply

[» I

6 Click Apply to commit the port additions.
7 Delete unused signals from Ports pane and add Clock signal.

The preceding figure shows that the query entered clock, clock enable, and
reset ports (labeled clk, enable, and reset respectively) into the ports list.

Delete the enable and reset signals from the Ports pane, and, for Incisive
and ModelSim users, add the clk signal in the Clocks pane.

For Discovery users, enter the clk signal via the PreSimTcl property of the
launchDiscovery function, as shown here:

'PreSimTcl', {'force manchester.clk 1 0, 0 5 -repeat 10'},

Both methods results in the same signals being present in the HDL
Cosimulation block, as shown in the next figures (examples shown for use
with Incisive).

Define the HDL Cosimulation Block Interface for Component Simulation

Function Block Parameters: HDL Cosimulation1 o X
Simulink and Incisive Cosimulation

Cosimulate hardware components using Incisive(R) simulators. Inputs from Simulink(R) are applied to HDL signals. Cutputs from
this block are driven by HDL signals.

Ports I Clocks] Timescales Connection] Tel]

[Enable direct feedthrough for HOL design with pure combinational datapath

Auto Fll Use the 'Auto Fll' button to automnatically create the signal interface from a specified HDL component instance.
Sample Fraction
Full HDL lame I/0 Mode Time Data Type im—

Inherit

Inherit

Delete —
/top/manchester/data |0utput j 1|Inherit =
/top/manchester/dvalid |0utput j l|Inherit j Inherit

M Jtop/manchester/dclk |0utput j j

New
/top/manchester;samp |Input j InherilInherit =
Up

-

Inheri

1 | Inherit

Apply

OK Cancel

4-25

4 Replacing an HDL Component with a Simulink Algorithm

4-26

E Function Block Parameters: HDL Cosimulation — O X

i~ Simulink and Incisive C

Cosimulate hamdware compansnis using Incizive (R simulaters. Inputs from Simulink(R) are appled to HOL signak. Outputs fom this black are driven by
HDL signaks.

[Ports | Clocks | Timsscaks | Connsction [Tel |

You can genemts your HOL chcks in this tab. The edge specifies the active edge in your HDL design. In orderto avoid mce conditons between the
genemted clock and the inputand output signals, the first active edge will be placed at time Period/2. Other options to genemte clocks, esets, and enablkes
includa:

® Usa Simulink blocks and add the signaks to the Parts tab

® Create waveforme using HOL simulator Tel commands in the Tl tab.

® Code them in HOL.

Full HDL Hame= Active Pariod

Clock Edge

fraenr/eis e [:

Up

8 Auto Fill returns default values for output ports:

e Sample time: 1

e Data type: Inherit

¢ Fraction length: Inherit

You may need to change these values as required by your model. In this

example, the Sample time should be set to 10 for all outputs. See also
“Specifying the Signal Data Types” on page 3-35.

9 Before closing the HDL Cosimulation block parameters dialog box, click

Apply to commit any edits you have made.

Define the HDL Cosimulation Block Interface for Component Simulation

E! Function Block Parameters: HDL Cosimulation x|
Simulink and ModelSim Cosimulation =
Cosimulate hardware companents with ModelSim(R) simulators. Inputs from Simulink{R) are applied to HDL signals. Outputs from this block are driven by HDL
signals.

Ports | Clocks I Timescales I Connection I Td |
™ Enable drect feedthrough for HOL design with pure combinational datapath
Auto Fill | Use the ‘Auto Fill' button to automatically create the signal interface from a specified HDL companent instance.
Full HDL Name I/0 Mod: e Data T: Frection
= | Time =E2 JYPS |1 ongth
New
/top/manchester/samp Input [¥|Inherit Inherit ¥|Inherit
Delete | /top/manchester/data output 7| 1|inherit ¥|Inheric
Up /top/menchester/dvalid [Output | 1|Inherit *|Inheric
ftop/manchester/dclk Cutput ¥| 1|Inherit ¥ |Inherit
Do | /top/manchester/sync_i |Output T 1|inheric = |Inheric
ftop/manchester/isum i Cutput | 1]Inherit *|Inherit
/top/manchester/gsum_i |Cutput = 1|Inherit =|Inheric
=]
0K | Cancel | Help | Apply |

Observe that Auto Fill returned information about all inputs and outputs
for the targeted component. In many cases, this will include signals that
function in the HDL simulator but cannot be connected in the Simulink
model. You may delete any such entries from the list in the Ports pane if
they are unwanted. You can drive the signals from Simulink; you just have to
define their values by laying down Simulink blocks.

Note that Auto Fill does not return information for internal signals. If your
Simulink model needs to access such signals, you must enter them into the
Ports pane manually. For example, in the case of the Manchester Receiver
model, you would need to add output port entries for top/manchester/sync_i,
top/manchester/isum_i, and top/manchester/qsum_i, as shown in step 8.

Incisive and ModelSim users: Note that clk, reset, and clk_enable may be

in the Clocks and Tcl panes but they don’t have to be. These signals can be
ports if you choose to drive them explicitly from Simulink.

4-27

4 Replacing an HDL Component with a Simulink Algorithm

4-28

Note When you import VHDL signals using Auto Fill, the HDL simulator
returns the signal names in all capitals.

Entering Signal Information Manually

To enter signal information directly in the Ports pane, perform the following
steps:

1 In the HDL simulator, determine the signal path names for the HDL
signals you plan to define in your block. For example, in the ModelSim
simulator, the following wave window shows all signals are subordinate to
the top-level module manchester.

Define the HDL Cosimulation Block Interface for Component Simulation

File Edit WView Add Format Toolz Window

=10l x|

-2 & 4 2R
@4 «w [FF] oo SEIEEBE I DP OB S
AT D\ N Bl ok 2| AQ24QR

Messages
Jmanchester fsamp
Jmanchester/dk
Jmanchester fenable

Jggkﬂklj:jr
[y] F

U
U
U
U
U
U
U
U
(SIN/NN}
UL

-
£-. nr's .|-_-|||||||| ||||||£__!-|i-||||||| |||||||-I|:I::I!-|i-||||||| ||||||. -||||||| IIIIII.IE: |-|-||||||| e — |
e Cursor 1 Ons
q 3K 3 [IET] O] |

| 0ns to 995 ns | Now: Ons Delta: 0 y

2 In Simulink, open the block parameters dialog box for your HDL
Cosimulation block, if it is not already open.

3 Select the Ports pane tab. Simulink displays the following dialog box
(example shown for use with Discovery).

4-29

4 Replacing an HDL Component with a Simulink Algorithm

L Function Block Parameters: HDL Cosimulation2 - 0O X

Simulink and Discovery Cosimulation

Cosimulate hardware components using Discovery(R) simulators. Inputs from Simulink(R) are applied to HDL signals. Qutputs
from this block are driven by HDL signals.

Ports 1 Timescales Connection

[T Enable direct feedthrough for HOL design with pure combinational datapath

Auto Fill Use the 'Auto Fll' button to autormatically create the signal interface from a specified HDL component
instance
Full HDL Name I/0 mode S3MPLE|popg qype [FT2CElem
Time Length

Delete —
Jtop/aigl |0utput j 10|Inherit

/top/aig3 Output = 10 |Inherit =|inherit
Down

Inherit

New
Jtop/sigl Input jInherit Inherit = |Inherit
Up

oK ‘ Cancel ‘ Help ‘ Apply ‘

In this pane, you define the HDL signals of your design that you want to
include in your Simulink block and set a sample time and data type for
output ports. The parameters that you should specify on the Ports pane
depend on the type of device the block is modeling as follows:

¢ For a device having both inputs and outputs: specify block input ports,
block output ports, output sample times and output data types.

For output ports, accept the default or enter an explicit sample time.
Data types can be specified explicitly, or set to Inherit (the default). In
the default case, the output port data type is inherited either from the
signal connected to the port, or derived from the HDL model.

¢ For a sink device: specify block output ports.

® For a source device: specify block input ports.

4 Enter signal path names in the Full HDL name column by double-clicking
on the existing default signal.

¢ Use HDL simulator path name syntax (see “Specifying HDL Signal/Port
and Module Paths for Cosimulation” on page 4-19).

¢ If you are adding signals, click New and then edit the default values.
Select either Input or Output from the I/O Mode column.

4-30

Define the HDL Cosimulation Block Interface for Component Simulation

e If you want to, set the Sample Time, Data Type, and Fraction Length

parameters for signals explicitly, as discussed in the remaining steps.

When you have finished editing clock signals, click Apply to register your

changes with Simulink.

The following dialog box shows port definitions for an HDL Cosimulation
block. The signal path names match path names that appear in the HDL
simulator wave window (Incisive example shown).

Ports I Clocks] Timescales

Function Block Parameters: HDL Cosimulationi

Simulink and Incisive Cosimulation

Connection] Tl]

™ Enable direct feedthrough for HOL design with pure combinational datapath

Cosimulate hardware components using Incisive(R) simulators. Inputs from Simulink(R) are applied to HDL signals. Outputs from
this block are driven by HDL signals.

Auto Fill Use the "Auto AIl' button to automatically create the signal interface from a specified HDL component instance.
Sample Fraction
Full HDL Hame 1/0 Mode . Data Type E—
New
/top/manchester/samp |Input j InheriffInherit = ‘ Inherit
Delete =
/top/manchester/data |0utput j 10|Inherit | Inh=rit
up | o s , =
Jtop/manchester/dvalid Output 10|Inherit = | Inherit
Down /top/manchester/delk |0utput j lD|Inherit j Inherit
/top/manchester/sync_i |0utput j lD|Inherit j Inherit
/top/manchester/isum_i |Clutput j lU|Inher.1t j Inherit
/top/manchester/qsum_i |Output jl 1D|Inherit j Inherit
OK | Cancel | Help Apply

Note When you define an input port, make sure that only one source is
set up to force input to that port. If multiple sources drive a signal, your
Simulink model may produce unpredictable results.

4-31

4 Replacing an HDL Component with a Simulink Algorithm

4-32

5 You must specify a sample time for the output ports. Simulink uses the
value that you specify, and the current settings of the Timescales pane,
to calculate an actual simulation sample time.

For more information on sample times in the EDA Simulator Link
cosimulation environment, see “Understanding the Representation of
Simulation Time” on page 7-14.

6 You can configure the fixed-point data type of each output port explicitly
if desired, or use a default (Inherited). In the default case, Simulink
determines the data type for an output port as follows:

If Simulink can determine the data type of the signal connected to the
output port, it applies that data type to the output port. For example,
the data type of a connected Signal Specification block is known by
back-propagation. Otherwise, Simulink queries the HDL simulator to
determine the data type of the signal from the HDL module.

To assign an explicit fixed-point data type to a signal, perform the following
steps:

a Select either Signed or Unsigned from the Data Type column.

b If the signal has a fractional part, enter the Fraction Length.

For example, if the model has an 8-bit signal with Signed data type and
a Fraction Length of 5, the HDL Cosimulation block assigns it the
data type sfix8 En5. If the model has an Unsigned 16-bit signal with no
fractional part (a Fraction Length of 0), the HDL Cosimulation block
assigns it the data type ufix16.

7 Before closing the dialog box, click Apply to register your edits.

Controlling Output Port Directly by Value of Input Port

Enabling direct feedthrough allows input port value changes to propagate to
the output ports in zero time, thus eliminating the possible delay at output
sample in HDL designs with pure combinational logic. Specify the option to
enable direct feedthrough on the Ports pane, as shown in the following figure.

Define the HDL Cosimulation Block Interface for Component Simulation

=] Function Block Parameters: HDL Cosimulation

’75imulink and ModelSim Cosimulation

Cosimulate hardware components with ModelSim(R) simulators. Inputs from Simulink(R) are applied to HOL sigr
by HOL signals.

Ports | Clocks Timescales Connection I Td |

[Enable direct feedthrough for HOL design with pure combinational datapath

Discovery Users You may not enable direct feedthrough if your design
contains mixed HDL (VHDL and Verilog). If you do, EDA Simulator Link will
display an error in the HDL simulator.

For more about the direct feedthrough feature, see “Eliminating Block
Simulation Latency” on page 7-37.

Specifying the Signal Data Types
The Data Type and Fraction Length parameters apply only to output

signals. See Data Type and Fraction Length on the Ports pane description
of the HDL Cosimulation block.

Configuring the Simulink and HDL Simulator Timing
Relationship

You configure the timing relationship between Simulink and the HDL
simulator by using the Timescales pane of the block parameters dialog box.
Before setting the Timescales parameters, you should read “Understanding
the Representation of Simulation Time” on page 7-14 to understand the
supported timing modes and the issues that will determine your choice of
timing mode.

You can specify either a relative or an absolute timing relationship between

Simulink and the HDL simulator in the Timescales pane, as described in the
HDL Cosimulation block reference.

4-33

4 Replacing an HDL Component with a Simulink Algorithm

4-34

Defining the Simulink and HDL Simulator Timing Relationship

The differences in the representation of simulation time can be reconciled in
one of two ways using the EDA Simulator Link interface:

¢ By defining the timing relationship manually (with Timescales pane)

When you define the relationship manually, you determine how many
femtoseconds, picoseconds, nanoseconds, microseconds, milliseconds,
seconds, or ticks in the HDL simulator represent 1 second in Simulink.

This quantity of HDL simulator time can be expressed in one of the
following ways:

= In relative terms (i.e., as some number of HDL simulator ticks). In
this case, the cosimulation is said to operate in relative timing mode.
The HDL Cosimulation block defaults to relative timing mode for
cosimulation. For more on relative timing mode, see “Relative Timing
Mode” on page 7-17.

= In absolute units (such as milliseconds or nanoseconds). In this case, the
cosimulation is said to operate in absolute timing mode. For more on
absolute timing mode, see “Absolute Timing Mode” on page 7-23.

For more on relative and absolute time, see “Understanding the
Representation of Simulation Time” on page 7-14.

¢ By allowing EDA Simulator Link to define the timescale automatically
(with Auto Timescale on the Timescales pane)

When you allow the link software to define the timing relationship, it
attempts to set the timescale factor between the HDL simulator and
Simulink to be as close as possible to 1 second in the HDL simulator = 1
second in Simulink. If this setting is not possible, the link product attempts
to set the signal rate on the Simulink model port to the lowest possible
number of HDL simulator ticks.

Configuring the Communication Link in the HDL
Cosimulation Block

You must select shared memory or socket communication (see “Overview to
Cosimulation with MATLAB or Simulink and the HDL Simulator”).

Define the HDL Cosimulation Block Interface for Component Simulation

After you decide, configure a block’s communication link with the Connection
pane of the block parameters dialog box (example shown for use with
Discovery).

E! Function Block Parameters: HDL Cosimulation - 0O X

~Simulink and Discovery Cosimulation

Cosimulate hardware components using Discove ry(R) simulators. Inputs from Simulink(R) are applied to HOL signals. Outputs from

this block are driven by HOL signals

Ports Timescales |} Connection

Connection Mode

@ Full Simulation
) Confirm Inte rface Only

() No Connection

[®| The HDL simulator is running on this computer.

Connection method:| Shared Memory |+

Host name: | ericksonmlinux

[%] Show connection info on icon.

(o Lo | e | o0

The following steps guide you through the communication configuration:

1 Determine whether Simulink and the HDL simulator are running on the
same computer. If they are, skip to step 4.

2 Clear the The HDL simulator is running on this computer check
box. (This check box defaults to selected.) Because Simulink and the HDL
simulator are running on different computers, Connection method is
automatically set to Socket.

3 Enter the host name of the computer that is running your HDL simulation
(in the HDL simulator) in the Host name text field. In the Port number
or service text field, specify a valid port number or service for your
computer system. For information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports” on page 6-30. Skip to step 5.

4-35

4 Replacing an HDL Component with a Simulink Algorithm

4-36

4 If the HDL simulator and Simulink are running on the same computer,
decide whether you are going to use shared memory or TCP/IP sockets for
the communication channel. For information on the different modes of
communication, see “Overview to Cosimulation with MATLAB or Simulink
and the HDL Simulator”.

If you choose TCP/IP socket communication, specify a valid port number
or service for your computer system in the Port number or service text
field. For information on choosing TCP/IP socket ports, see “Choosing
TCP/IP Socket Ports” on page 6-30.

If you choose shared memory communication, select the Shared memory
check box.

5 If you want to bypass the HDL simulator when you run a Simulink
simulation, use the Connection Mode options to specify what type of
simulation connection you want. Select one of the following options:

¢ Full Simulation: Confirm interface and run HDL simulation (default).

¢ Confirm Interface Only: Check HDL simulator for proper signal
names, dimensions, and data types, but do not run HDL simulation.

e No Connection: Do not communicate with the HDL simulator. The
HDL simulator does not need to be started.

With the second and third options, EDA Simulator Link software does not
communicate with the HDL simulator during Simulink simulation.

6 Click Apply.

The following example dialog box shows communication definitions for an
HDL Cosimulation block. The block is configured for Simulink and the HDL
simulator running on the same computer, communicating in TCP/IP socket
mode over TCP/IP port 4449 (example shown for use with Discovery).

Define the HDL Cosimulation Block Interface for Component Simulation

E! Function Block Parameters: HDL Cosimulation |

~Simulink and Discovery Cosimulation

D] %

Cosimulate hardware components using Discovery(R) simulators. Inputs from Simulink{R) are applied to HDL signals. Cutputs from

this block are driven by HOL signals

Timescales Connection l

Connection Mode

@ Full Simulation
() Confirm Interface Only

) No Connection

[] The HDL simulator is running on this computer.

onmecton metnor
Hostnane:

Fort number or service:| 4443

|| Show connection info an icon.

3
1

[oK " Cance| H Help ” Apply

Specifying Pre- and Post-Simulation Tcl Commands
with HDL Cosimulation Block Parameters Dialog Box

Note This section is for ModelSim and Incisive users only. Discovery users
see launchDiscovery for instructions on issuing Tcl commands.

You have the option of specifying Tcl commands to execute before and after
the HDL simulator simulates the HDL component of your Simulink model.
Tcl is a programmable scripting language supported by most HDL simulation
environments. Use of Tcl can range from something as simple as a one-line
puts command to confirm that a simulation is running or as complete as

a complex script that performs an extensive simulation initialization and
startup sequence. For example, you can use the Post- simulation command
field on the Tcl Pane to instruct the HDL simulator to restart at the end of a
simulation run.

4-37

4 Replacing an HDL Component with a Simulink Algorithm

You can specify the pre-simulation and post-simulation Tcl commands
by entering Tcl commands in the Pre-simulation commands or
Post-simulation commands text fields of the HDL Cosimulation block.

To specify Tcl commands, perform the following steps:

1 Select the Tcl tab of the Block Parameters dialog box. The dialog box
appears as follows (example shown for use with Incisive).

E Function Block Parameters: HDL Cosimulation — O X

i~ Simulink and Incisive C

Cosimulate hardware camponsnis using Incisive (R simulators. Inputs from Simulink(R) are appled to HOL signak. Outputs fom this black are driven by
HDL signaks.

[Ports [Chcks | Timsscaks | Connsstion | Tel

Pre-simulation commands:

puts "Running Simulink Cosimulation block."

Fost-simulation commands:

puts "dans"

Lo [o e | o]

The Pre-simulation commands text box includes an puts command for
reference purposes.

2 Enter one or more commands in the Pre-simulation command and
Post-simulation command text boxes. You can specify one Tcl command
per line in the text box or enter multiple commands per line by appending
each command with a semicolon (;), which is the standard Tcl concatenation
operator.

4-38

Define the HDL Cosimulation Block Interface for Component Simulation

ModelSim DO Files

Alternatively, you can create a ModelSim DO file that lists Tcl commands
and then specify that file with the ModelSim do command as shown in
the following figure.

E! Function Block Parameters: HDL Cosimulation S|

" Simulink. and ModelSim Cosimulation

Cosimulate hardware components with Model3im[R) simulators. Inputs from Simulink(R] are applied to HOL signals. Outputs from this block are diven by
HOL signals.

Ports I Clocks Timescales Connection Tel

Pre-simulation commands:

do mycosimstartup. do

Post-simulation commands:

puts "done’’

ok Cancel Help Apply

3 Click Apply.

Programmatically Controlling the Block Parameters

One way to control block parameters is through the HDL Cosimulation
block graphical dialog box. However, you can also control blocks by
programmatically controlling the mask parameter values and the running of
simulations. Parameter values can be read using the Simulink get_param
function and written using the Simulink set_param function. All block
parameters have attributes that indicate whether they are:

® Tunable — The attributes can change during the simulation run.

® Evaluated — The parameter string value undergoes an evaluation to
determine its actual value used by the S-Function.

4-39

4 Replacing an HDL Component with a Simulink Algorithm

4-40

The HDL Cosimulation block does not have any tunable parameters; thus,
you get an error if you try to change a value while the simulation is running.
However, it does have a few evaluated parameters.

You can see the list of parameters and their attributes by performing

a right-mouse click on the block, selecting View Mask, and then the
Parameters tab. The Variable column shows the programmatic parameter
names. Alternatively, you can get the names programmatically by selecting
the HDL Cosimulation block and then typing the following commands at
the MATLAB prompt:

>> get_param(gcb, 'DialogParameters’)

Some examples of using MATLAB to control simulations and mask parameter
values follow. Usually, the commands are put into a script or function file
and automatically called by several callback hooks available to the model
developer. You can place the code in any of these suggested locations, or
anywhere you choose:

® Inthe model workspace, for example, View > Model Explorer > Simulink
Root > model_name > Model Workspace > Data Source is MDL-File.

e In a model callback, for example, File > Model Properties > Callbacks.

® A subsystem callback (right-mouse click on an empty subsystem and then

select Block Properties > Callbacks). Many of the EDA Simulator Link
demos use this technique to start the HDL simulator by placing MATLAB
code in the OpenFen callback.

¢ The HDL Cosimulation block callback (right-mouse click on HDL
Cosimulation block, and then select Block Properties > Callbacks).

Example: Scripting the Value of the Socket Number for HDL
Simulator Communication

In a regression environment, you may need to determine the socket number
for the Simulink/HDL simulator connection during the simulation to avoid

collisions with other simulation runs. This example shows code that could
handle that task. The script is for a 32-bit Linux platform.

ttcp_exec = [matlabroot '/toolbox/shared/hdllink/scripts/ttcp_glnx'];

[status, results] = system([ttcp_exec ' -a'l);

Define the HDL Cosimulation Block Interface for Component Simulation

if ~s
parsed_result = textscan(results, '%s');
avail_port = parsed_result{1}{2};

else
error(results);

end

set_param('MyModel/HDL Cosimulation', 'CommPortNumber', avail_port);

4-41

4 Replacing an HDL Component with a Simulink Algorithm

4-42

Run a Component Cosimulation Session

In this section...

“Setting Simulink Software Configuration Parameters” on page 4-42
“Determining an Available Socket Port Number” on page 4-44
“Checking the Connection Status” on page 4-44

“Running and Testing a Component Cosimulation Model” on page 4-44

“Avoiding Race Conditions in HDL Simulation with Component
Cosimulation and the EDA Simulator Link HDL Cosimulation Block” on

page 4-48

Setting Simulink Software Configuration Parameters

When you create a Simulink model that includes one or more EDA Simulator
Link Cosimulation blocks, you might want to adjust certain Simulink
parameter settings to best meet the needs of HDL modeling. For example,
you might want to adjust the value of the Stop time parameter in the Solver
pane of the Configuration Parameters dialog box.

You can adjust the parameters individually or you can use the MATLAB
file dspstartup, which lets you automate the configuration process so that
every new model that you create is preconfigured with the following relevant
parameter settings:

Parameter Default Setting
‘SingleTaskRateTransMsg' ‘error'

‘Solver' 'fixedstepdiscrete'
‘SolverMode'’ 'singletasking’
‘StartTime' '0.0'

'StopTime' "inf!'

'FixedStep' 'auto’

‘SaveTime' "off'

Run a Component Cosimulation Session

Parameter Default Setting
'SaveOutput'’ "off'
'AlgebraicLoopMsg"’ ‘error'

The default settings for SaveTime and SaveOutput improve simulation
performance.

You can use dspstartup by entering it at the MATLAB command line or

by adding it to the Simulink startup.m file. You also have the option of
customizing dspstartup settings. For example, you might want to adjust the
StopTime to a value that is optimal for your simulations, or set SaveTime to
"on" to record simulation sample times.

4-43

4 Replacing an HDL Component with a Simulink Algorithm

4-44

For more information on using and customizing dspstartup, see the Signal
Processing Blockset documentation. For more information about automating
tasks at startup, see the description of the startup command in the MATLAB
documentation.

Determining an Available Socket Port Number
To determine an available socket number use: ttcp -a a shell prompt.

Checking the Connection Status

You can check the connection status by clicking the Update diagram button

@ or by selecting Edit > Update Diagram. If there is a connection error,
Simulink will notify you.

The MATLAB command pingHd1Sim can also be used to check the connection
status. If a -1 is returned, then there is no connection with the HDL simulator.

Running and Testing a Component Cosimulation
Model

In general, the last stage of cosimulation is to run and test your model. There
are some steps you must be aware of when changing your model during or
between cosimulation sessions. although your testing methods may vary
depending on which HDL simulator you have, You can review these steps in
“Testing the Cosimulation” on page 3-50.

You can run the cosimulation in one of three ways:

¢ Through the HDL simulator GUI
e With the command-line interface (CLI)
¢ In batch mode

Cosimulation Using the Simulink and HDL Simulator GUIs

Start the HDL simulator and load your HDL design. For test bench
cosimulation, begin simulation first in the HDL simulator. Then, in Simulink,

Run a Component Cosimulation Session

click Simulation > Start or the Start Simulation button m in your
Simulink model window. Simulink runs the model and displays any errors
that it detects. You can alternate between the HDL simulator and Simulink
GUIs to monitor the cosimulation results.

For component cosimulation, start the simulation in Simulink first, then
begin simulation in the HDL simulator.

You can specify "GUI" as the property value for the run mode parameter of
the EDA Simulator Link HDL simulator launch command, but since using the
GUI is the default mode for EDA Simulator Link, it is not necessary to do so.

Cosimulation with Simulink Using the Command Line Interface
(CLI)

Running your cosimulation session using the command-line interface allows
you to interact with the HDL simulator during cosimulation, which can be
helpful for debugging.

To use the CLI, specify "CLI" as the property value for the run mode
parameter of the EDA Simulator Link HDL simulator launch command.

Caution Close the terminal window by entering "quit -f" at the command
prompt. Do not close the terminal window by clicking the "X" in the upper
right-hand corner. This causes a memory-type error to be issued from the
system. This is not a bug with EDA Simulator Link but just the way the
HDL simulator behaves in this context.

You can type CTRL+C to interrupt and terminate the simulation in the HDL
simulator but this action also causes the memory-type error to be displayed.

Specifying CLI mode with nclaunch (for use with Cadence Incisive)

Issue the nclaunch command with "CLI" as the runmode property value, as
follows (example entered into the MATLAB editor):

tclemd = { ['cd ',unixprojdir],...

4-45

4 Replacing an HDL Component with a Simulink Algorithm

4-46

['exec ncvlog -linedebug ',unixsrcfilet],...
‘exec ncelab -access +wc work.inverter_vl',...
‘hdlsimulink -gui work.inverter_vl'

b
nclaunch('tclstart',tclcmd, 'runmode', 'CLI"');

Specifying CLI mode with vsim (for use with Mentor Graphics
ModelSim)

Issue the vsim command with "CLI" as the runmode property value, as follows
(example entered into the MATLAB editor):

tclemd = {'vlib work',...
'vlog addone_vlog.v add_vlog.v top_frame.v',...
'vsimulink top =socket 5002'};

vsim('tclstart',tclcmd, 'runmode','CLI"');

Specifying CLI mode with launchDiscovery (for use with Synopsys
Discovery)

Issue the launchDiscovery command with "CLI" as the RunMode parameter,
as follows:

pv = launchDiscovery(

'LinkType', 'Simulink’,

langParam, 'vliog',

'TopLevel', 'gainx2',

'"RunMode ', 'CLI',

'PreSimTcl', {'force clk 0 0, 1 1 -repeat 2'},
'"AccFile', [srcbase '/gainx2.pli_acc.tab']

You can see the CLI method of cosimulation in action in the Simple Gain
Block demo.

Cosimulation with Simulink Using Batch Mode

Running your cosimulation session in batch mode allows you to keep the

process in the background, reducing demand on memory by disengaging the
GUL

Run a Component Cosimulation Session

To use the batch mode, specify "Batch" as the property value for the run mode
parameter of the EDA Simulator Link HDL simulator launch command.
After you issue the EDA Simulator Link HDL simulator launch command
with batch mode specified, start the simulation in Simulink. To stop the
HDL simulator before the simulation is completed, issue the breakHd1Sim
command.

Specifying Batch mode with nclaunch (for use with Cadence Incisive)

Issue the nclaunch command with "Batch" as the runmode parameter, as
follows:

nclaunch('tclstart',manchestercmds, 'runmode', 'Batch')

You can also set runmode to "Batch with Xterm", which starts the HDL
simulator in the background but shows the session in an Xterm.

Specifying Batch mode with vsim (for use with Mentor Graphics
ModelSim)

On Windows, specifying batch mode causes ModelSim to be run in a
non-interactive command window. On Linux, specifying batch mode causes
Modelsim to be run in the background with no window.

Issue the vsim command with "Batch" as the runmode parameter, as follows:
>> vsim('tclstart',manchestercmds, 'runmode', 'Batch')

Specifying Batch mode with launchDiscovery (for use with Synopsys
Discovery)

Issue the launchDiscovery command with "Batch" as the RunMode
parameter, as follows:

pv = launchDiscovery(

'LinkType', 'Simulink’,

langParam, 'vliog',

'TopLevel', 'gainx2',

'"RunMode ', 'Batch',

'PreSimTcl', {'force clk 0 0, 1 1 -repeat 2'},
'"AccFile', [srcbase '/gainx2.pli_acc.tab']

4-47

4 Replacing an HDL Component with a Simulink Algorithm

4-48

You can also set RunMode to "Batch with Xterm", which starts the HDL
simulator in the background but shows the session in an Xterm.

You can see the batch mode method of cosimulation in action in the Simple
Gain Block demo. View the last section, “Running a Fully Batch-Mode
Cosimulation for Regressions”, for a demonstration of how to run Simulink
in the background as well.

Testing the Cosimulation

If you wish to reset a clock during a cosimulation, you can do so in one of
these ways:

* By entering HDL simulator force commands at the HDL simulator
command prompt

¢ (ModelSim and Incisive users only) By specifying HDL simulatorforce
commands in the Post- simulation command text field on the Tcl pane
of the EDA Simulator Link Cosimulation block parameters dialog box.

See also “Driving Clocks, Resets, and Enables” on page 7-29.
If you change any part of the Simulink model, including the HDL
Cosimulation block parameters, update the diagram to reflect those changes.

You can do this update in one of the following ways:

e Rerun the simulation

2

® (Click the Update diagram button

* Select Edit > Update Diagram

Avoiding Race Conditions in HDL Simulation with
Component Cosimulation and the EDA Simulator Link
HDL Cosimulation Block

In the HDL simulator, you cannot control the order in which clock signals
(rising-edge or falling-edge) defined in the HDL Cosimulation block (or
for Discovery users, defined with launchDiscovery) are applied, relative
to the data inputs driven by these clocks. If you are careful to ensure the

Run a Component Cosimulation Session

relationship between the data and active edges of the clock, you can avoid race
conditions that could create nondeterministic cosimulation results.

For more on race conditions in hardware simulators, see “Avoiding Race
Conditions in HDL Simulators” on page 7-2.

4-49

4 Replacing an HDL Component with a Simulink Algorithm

4-50

Recording Simulink Signal
State Transitions for
Post-Processing

¢ “Adding a Value Change Dump (VCD) File” on page 5-2
e “To VCD File Block Tutorial” on page 5-6

5 Recording Simulink Signal State Transitions for Post-Processing

Adding a Value Change Dump (VCD) File

In this section...

“Introduction to the EDA Simulator Link To VCD File Block” on page 5-2
“Using the To VCD File Block” on page 5-3

Introduction to the EDA Simulator Link To VCD File
Block

A value change dump (VCD) file logs changes to variable values, such as the
values of signals, in a file during a simulation session. VCD files can be useful
during design verification. Some examples of how you might apply VCD files
include the following cases:

® For comparing results of multiple simulation runs, using the same or
different simulator environments

® As input to post-simulation analysis tools

® For porting areas of an existing design to a new design

VCD files can provide data that you might not otherwise acquire unless you
understood the details of a device’s internal logic. In addition, they include
data that can be graphically displayed or analyzed with postprocessing tools,
including, for example, the extraction of data about a particular section of a
design hierarchy or data generated during a specific time interval.

Another example, this specifically for ModelSim users, is the ModelSim
vcd2wlf tool, which converts a VCD file to a Wave Log Format (WLF) file that
you can view in a ModelSim wave window.

The To VCD File block provided in the link block library serves as a VCD file
generator during Simulink sessions. The block generates a VCD file that
contains information about changes to signals connected to the block’s input
ports and names the file with a specified file name.

Adding a Value Change Dump (VCD) File

Note The To VCD File block logs changes to states '1' and '0' only. The
block does not log changes to states 'X' and 'Z".

Using the To VCD File Block

To generate a VCD file, perform the following steps:

1 Open your Simulink model, if it is not already open.

2 Identify where you want to add the To VCD File block. For example, you
might temporarily replace a scope with this block.

3 In the Simulink Library Browser, click EDA Simulator Link and then
select the block library for your HDL simulator. You will see the HDL
Cosimulation block icon and the To VCD File block icon.

J simulink.wed

To WCD File

4 Copy the To VCD File block from the Library Browser to your model by
clicking the block and dragging it from the browser to your model window.

5 Connect the block ports to appropriate blocks in your Simulink model.

Note Because multidimensional signals are not part of the VCD
specification, they are flattened to a 1D vector in the file.

6 Configure the To VCD File block by specifying values for parameters in the
Block Parameters dialog box, as follows:

a Double-click the block icon. Simulink displays the following dialog box.

5-3

5 Recording Simulink Signal State Transitions for Post-Processing

5-4

m Sink Block Parameters: To VCD File — 0O X

— To VCD File

Genemtes a value change dump (WCD) filk containing information about changes to
signaks connected o the block's input pors. The VGO fike name field specifies the name of
the genemted file.

— Pammeterz

VCD file name:

|E:imu link.wved I

Number of input pors:

[I

Timescalk
1 sacand in Simulink -:::-rraspc-ndstc-|1 ”-r.ck | in the HDL simulator
1 HDL tick i defined as 1 E] AT E]

T B T

b Specify a file name for the generated VCD file in the VCD file name

text box.

¢ [f you specify a file name only, Simulink places the file in your current
MATLAB folder.

¢ Specify a complete path name to place the generated file in a different
location.

¢ [f you want the generated file to have a .vcd file type extension, you
must specify it explicitly.

Adding a Value Change Dump (VCD) File

Note Do not give the same file name to different VCD blocks. Doing so
results in invalid VCD files.

¢ Specify an integer in the Number of input ports text box that indicates
the number of block input ports on which signal data is to be collected.
The block can handle up to 94? (830,584) signals, each of which maps to
a unique symbol in the VCD file.

d Click OK.

7 Choose a timing relationship between Simulink and the HDL simulator.
The time scale options specify a correspondence between one second of
Simulink time and some quantity of HDL simulator time. Choose relative
time or absolute time. For more on the To VCD File time scale, see the
reference documentation for the To VCD File block.

8 Run the simulation. Simulink captures the simulation data in the VCD
file as the simulation runs.

For a description of the VCD file format see “VCD File Format”. For a sample
application of a VCD file, see “T'o VCD File Block Tutorial” on page 5-6.

5 Recording Simulink Signal State Transitions for Post-Processing

To VCD File Block Tutorial

In this section...

“Tutorial: Overview” on page 5-6

“Tutorial: Instructions” on page 5-6

Tutorial: Overview

Note This tutorial and the tool used are specific to ModelSim users; however,
much of the process will be the same for Incisive and Discovery users with a
similar tool. See HDL simulator documentation for details.

VCD files include data that can be graphically displayed or analyzed with
postprocessing tools. An example of such a tool is the ModelSim vcd2wlf tool,
which converts a VCD file to a WLF file that you can then view in a ModelSim
wave window. This tutorial shows how you might apply the vcd2wlf tool.

Tutorial: Instructions
Perform the following steps to view VCD data:

1 Place a copy of the Manchester Receiver Simulink demo
manchestermodel.mdl in a writable folder.

2 Open your writable copy of the Manchester Receiver model. For example,
select File > Open, select the file manchestermodel.mdl and click Open.
The Simulink model should appear as follows. The HDL Cosimulation
block is marked “VHDL Manchester Receiver”.

To VCD File Block Tutorial

VHDL Manchester
Receiver Simulation
Information

Phase/Frequency Emor Controls

¥

Orig Raw

Orig Data -

Decoded Data —,_>

Emor Test

| Decoded Raw

—{ Diclk

Data Align

Original Data

ModelSim

‘&)

Input Data
.—’E} - *y | Fhaze Offzat
Encodad
Frequency Frequency
Emor Range Emor Slider Manchester Encoder

E Signal 1

Phas= Event

¥

B =

Simulatar

SharedMem

Ll
data Recovered Data » |:|

Recoversd Clock

VHDOL Manchester Receiver

delk »
i Dsts Validity »
synci |LE Signal
IL !

)) Inghase O Scope
isum_i |

. Lo -
gsum_i {2 Quadraturs”

1Q Capture

12 Map

Befare running this model you must first launch ModelSim.
You can launch ModelSim on this computer using either a
shared memaory link ar a TCPAP socket link.

Shared memaory link:
1) Be sure that the ‘Connection’ tab of the Cosimulation block
dialog is set as follows:

‘MadelSim running on this computer is checked

and "Shared memaory is selected

2) Execute the following MATLAB command:
vsim(tclstat, manchestercmds)

3) Start the Simulink simulation.

TCPIP socket link:

vsim(tclstat, manchestercmds)

%Double-click here to launch a new ModelSim

1) Be sure that the 'Connection’ tab of the Cosimulation block

dialog is set as follows:

‘MaodelSim running on this computer is checked

and "Socket is selected

‘Port number or service' matches the port number used

in the command below.

2) Execute the following MATLAB command:

vsim(tclstat, manchestercmds,'socketsimulink’ 4442)
3) Start the Simulink simulation.

ModelSim Startup Command(Shared Memory)

Do not follow the numbered steps in the Manchester Receiver model.

vsim(tclstart, manchestercmds,'socketsimulink’ 4442)
%D ouble-click here to launch a new ModelSim

ModelSim Startup Command(TCPAP Socket)

Copyright 2003-2009 The MathWorks, Inc.

Follow only the steps provided in this tutorial.

3 Open the Library Browser.

Bit Errors
Scope

4 Replace the Signal Scope block with a To VCD File block, as follows:

a Delete the Signal Scope block. The lines representing the signal
connections to that block change to dashed lines, indicating the
disconnection.

b Find and open the EDA Simulator Link block library.

5 Recording Simulink Signal State Transitions for Post-Processing

¢ Click “For Use with Mentor Graphics ModelSim” to access the EDA
Simulator Link Simulink blocks for use with ModelSim.

d Copy the To VCD File block from the Library Browser to the model by
clicking the block and dragging it from the browser to the location in
your model window previously occupied by the Signal Scope block.

e Double-click the To VCD File block icon. The Block Parameters dialog
box appears.

m Sink Block Parameters: To VCD File — O

— To VCD File

Genemtes a value change dump (WCD) filk containing information about changes to

the genemted file.

signaks connected o the block's input pors. The VGO fike name field specifies the name of

— Pammeterz

VCD file name:

|simu link.wved

Number of input pors:

|1

Timescalk
1 sacand in Simulink -:'.Drraspnndsh:\|1 ”-r.ck | in the HDL simulator
1 HOL tick i defined as 1 E] ne E]

T B T

f Type MyvCDfile.vcd in the VCD file name text box.
g Type 4 in the Number of input ports text box.
h Click OK. Simulink applies the new parameters to the block.

To VCD File Block Tutorial

5 Connect the signals Original Data, Recovered Data, Recovered Clock
and Data Validity to the block ports. The following display highlights the
modified area of the model.

Orig Raw

>
Orig Dsta 1 2
Jpe{ Decoded Raw ~=
—] D Decoded Data —| Emor Test Bit Emors
Scope
Data Align
Original Cata »
data Recovered Cata »
Iy COfile vod
deolk Recovered Clock »
ModelSim dvalid Data Validity ~
i i sync_i j{LE To VCD File
Simulator - L »
;i : ~ Inphase
isum_i -l
. oo »
SharedMem M- -2 Quadrature’
ac
VHDL Manchester Receivar BErrm 12 Msp

6 Save the model.

7 Select the following command line from the instructional text that appears
in the demonstration model:

vsim('tclstart',manchestercmds, 'socketsimulink',b4442)

8 Paste the command in the MATLAB Command Window and execute the
command line. This command starts ModelSim and configures it for a
Simulink cosimulation session.

9 Open the HDL Cosimulation block parameters dialog box and select the
Connection tab. Change the Connection method to Socket and “4442” for
the TCP/IP socket port. The port you specify here must match the value
specified in the call to the vsim command in the previous step.

10 Start the simulation from the Simulink model window.

11 When the simulation is complete, locate, open, and browse through the
generated VCD file, MyVCDfile.vcd (any text editor will do).

12 Close the VCD file.

13 Change your input focus to ModelSim and end the simulation.

5-9

5 Recording Simulink Signal State Transitions for Post-Processing

5-10

14 Change the current folder to the folder containing the VCD file and enter
the following command at the ModelSim command prompt:

vcd2wlf MyVCDfile.vcd MyVCDfile.wlf

The vcd2wlf utility converts the VCD file to a WLF file that you display
with the command vsim -view.

15 In ModelSim, open the wave file MyVCDfile.wlf as data set MyvCDwlf
by entering the following command:

vsim -view MyVCDfile.wlf

16 Open the MyVCDw1f data set with the following command:

add wave MyVCDfile:/*

A wave window appears showing the signals logged in the VCD file.

@

17 Click the Zoom Full button to view the signal data. The wave window
should appear as follows.

To VCD File Block Tutorial

-l x|

File Edit Wiew Add Format Tools Window

NEEeE B AED | S
24 «= 100 s B ELEEEE R BGRB8 R & 80 o o W

%-E&@@Jr@y B @ RQ@QR | [T 1M

Jmanchestermodel [Original_Data
Jmanchestermodel/Recovered_Data
Jmanchestermodel fRecovered_Clock
fmanchestermodel /Data_Validity

I3 KT 2 [T |

W[[[[—

| 0ns to 965 ns |

18 Exit the simulation. One way of exiting is to enter the following command:

dataset close MyVCDfile

ModelSim closes the data set, clears the wave window, and exits the
simulation.

For more information on the ved2wlf utility and working with data sets, see
the ModelSim documentation.

5-11

5 Recording Simulink Signal State Transitions for Post-Processing

5-12

Additional Deployment
Options

* “Adding Questa ADMS Support” on page 6-2

* “Diagnosing and Customizing Your Setup for Use with the HDL Simulator
and EDA Simulator Link Software” on page 6-5

e “Performing Cross-Network Cosimulation” on page 6-15

e “Establishing EDA Simulator Link Machine Configuration Requirements”
on page 6-26

e “Specifying TCP/IP Socket Communication” on page 6-29

* “Improving Simulation Speed” on page 6-34

6 Additiondl Deployment Options

Adding Questa ADMS Support

In this section...

“Adding Libraries for Questa ADMS Support” on page 6-2

“Linking MATLAB or Simulink Software to ModelSim in Questa ADMS”
on page 6-2

Adding Libraries for Questa ADMS Support

Note Mentor Graphics Users Only

You do not need a special library installation for Mentor Graphics® Questa
(ADMS) support.

If you must add system libraries to the LD_LIBRARY_PATH you can add
them in a .vams_setup file. Doing it this way (rather than specifying the
path before calling vasim) prevents vasim from overwriting the path addition
each time it starts.

This example appends the system shared libraries to LD_LIBRARY_PATH:

proc fixldpath {args} {
set pvpair [split [join $args]]

set pval [lindex $pvpair 1]
append newpval /directory/of/system/dlls ":" $pval
append setcmd { array set env [list LD_LIBRARY_PATH } " " $newpval " "]

uplevel 1 $setcmd
}

fixldpath [array get env LD_LIBRARY_PATH]

Linking MATLAB or Simulink Software to ModelSim
in Questa ADMS

e “Starting Questa ADMS for Use with EDA Simulator Link Software” on
page 6-3

Adding Questa ADMS Support

e “Using Tecl Test Bench Commands with Questa ADMS” on page 6-4

® “Constraints” on page 6-4

Starting Questa ADMS for Use with EDA Simulator Link
Software

Call vasim with all parameters manually; the configuration script available
for the ModelSim® simulator is not available for Questa ADMS.

When you call vasim, provide the -ms and -foreign parameters. For example,

vasim -1lib ADC12_ELDO_MS -cmd
/devel/user/work/ams/adci2test.cmd TEST -ms -foreign matlabclient path/matlablibrary

where:
-lib ADC12_ELDO_MS is the model library
/devel/user/work/ams/adc12test.cmd is the command file
TEST is the design
path/matlablibrary is the path to and the name of the

MATLAB shared library (see “Using
the EDA Simulator Link Libraries
for HDL Cosimulation”)

A similar example for the Simulink link looks like the following code:

vasim -1lib ADC12_ELDO_MS -cmd
/devel/user/work/ams/adci12test.cmd TEST -ms

-foreign simlinkserver path/simulinklibrary

This command sends all line arguments after "ms" to the ModelSim process.

See your ModelSim documentation for more about the -foreign option.

6-3

6 Additiondl Deployment Options

Using Tcl Test Bench Commands with Questa ADMS

When you use any of the EDA Simulator Link functions for the HDL simulator
(for example, matlabcp or matlabtb), precede each command with ms in the
Questa ADMS Tecl interpreter. For example:

ms matlabtb myfirfilter 5 ns -repeat 10 ns -socket 4449

This command sends all line arguments after 'ms’ to the ModelSim process.

Constraints

Setting Simulation Running Time. When running cosimulation sessions
in Simulink, make sure that the runtime of the Questa ADMS simulation is
greater than or equal to the Simulink runtime.

Diagnosing and Customizing Your Setup for Use with the HDL Simulator and EDA Simulator Link™ Software

Diagnosing and Customizing Your Setup for Use with the
HDL Simulator and EDA Simulator Link Software

In this section...

“Overview to the EDA Simulator Link Configuration and Diagnostic Script”
on page 6-5

“Using the Configuration and Diagnostic Script for UNIX/Linux” on page 6-6
“Using the Configuration and Diagnostic Script with Windows” on page 6-13

Overview to the EDA Simulator Link Configuration
and Diagnostic Script

Note Incisive and ModelSim Users Only

For Incisive and ModelSim HDL simulator users, EDA Simulator Link
software provides a guided setup script (syscheckmq for ModelSim users and
syscheckin for Incisive users) for configuring the MATLAB and Simulink
connections to your simulator. This script works whether you have installed
the link software and MATLAB on the same machine as the HDL simulator
or installed them on different machines.

The setup script creates a configuration file containing the location of the
appropriate EDA Simulator Link MATLAB and Simulink libraries. You can
then include this configuration with any other calls you make using the
command vsim (ModelSim) or ncsim (Incisive) from the HDL simulator. You
only need to run this script once.

Note The EDA Simulator Link configuration and diagnostic script works
only on UNIX and Linux. Windows users: please see instructions below.

You can find the setup scripts in the following folder:

matlabroot/toolbox/edalink/foundation/hdllink/scripts

6 Additiondl Deployment Options

6-6

Refer to “Using the EDA Simulator Link Libraries for HDL Cosimulation” for
the correct link application library for your platform.

For assistance in performing cross-network cosimulation, see “Performing
Cross-Network Cosimulation” on page 6-15.

After you have created your configuration files, see “Starting the HDL
Simulator from a Shell”.

Using the Configuration and Diagnostic Script for
UNIX/Linux

The setup script provides an easy way to configure your simulator setup to
work with the EDA Simulator Link software.

The following is an example of running the setup script under the following
conditions:

® You have installed EDA Simulator Link on a Linux 64 machine.

® You have moved the EDA Simulator Link libraries to a different location
than where you first installed them (either to another folder or to another
machine).

* You want to test the TCP/IP connection.

Running the Configuration and Diagnostic Script for ModelSim
(syscheckmq)

Start the script by typing syscheckmq at a system prompt. The system
returns the following information:

% syscheckmq

B R]

Kernel name: Linux
Kernel release: 2.6.22.8-mw017
Machine: x86_64

]

Diagnosing and Customizing Your Setup for Use with the HDL Simulator and EDA Simulator Link™ Software

The script first returns the location of the HDL simulator installation
(vsim.exe). If it does not find an installation, you receive an error message.
Either provide the path to the installation or quit the script and install the
HDL simulator. You are then prompted to accept this installation or provide
a path to another one, after which you receive a message confirming the HDL
simulator installation:

Found /hub/share/apps/HDLTools/ModelSim/modelsim-6.4a-tmw-000/modeltech/bin/vsim
on the path.

Press Enter to use the path we found or enter another one:

L R R R R 2

/hub/share/apps/HDLTools/ModelSim/modelsim-6.4a-tmw-000/modeltech/bin/vsim -version
Model Technology ModelSim SE-64 vsim 6.4a Simulator 2008.08 Aug 28 2008
ModelSim mode: 32 bits

L R R R R

Next, the script needs to know where it can find the EDA Simulator Link
libraries.

Select method to search for EDA Simulator Link libraries:

1. Use libraries in a MATLAB installation.

2. Prompt me to specify the direct path to the libraries.

2

Enter the path to liblfmhdlc_tmwgcc.so and liblfmhdls_tmwgcc.so:
/tmp/extensions/modelsim/1linux64

Found /tmp/extensions/modelsim/linux64/1liblfmhdlc_tmwgcc.so

and /tmp/extensions/modelsim/linux64/1iblfmhdls_tmwgcc.so.

The script then runs a dependency checker to check for supporting libraries.
If any of the libraries cannot be found, you probably need to append your
environment path to find them.

hokkkkkkkkhkkkkkkkkhkk kA k ok ok kA Ak ok ok h kA k ok kA Ak k kA kkkh kA kkkhkk kA Ak kkkk kA kkkkkkk k%

Running dependency checker "ldd /tmp/extensions/modelsim/linux64/1liblfmhdlc_tmwgcc.so".
Dependency checker passed.
Dependency status:

librt.so.1 => /1lib/librt.so.1 (0x00002acfe566e000)

6 Additiondl Deployment Options

libstdc++.s0.6 => /usr/lib/libstdc++.s0.6 (0x00002acfe5778000)
libm.so.6 => /lib/libm.so0.6 (0x00002acfe5976000)

libgcc_s.so.1 => /lib/libgcc_s.so.1 (0x00002acfe5af8000)
libc.so0.6 => /lib/libc.so0.6 (0x00002acfe5c6000)
/1ib64/1d-1linux-x86-64.50.2 (0x0000555555554000)

L e e T

This next step loads the EDA Simulator Link libraries and compiles a test
module to verify the libraries loaded correctly.

Press Enter to load EDA Simulator Link or enter 'n' to skip this test:

Reading /mathworks/hub/share/apps/HDLTools/ModelSim/modelsim-6.4a-tmw-000/se/modeltech/
linux_x86_64/../modelsim.ini "worklfx9019" maps to directory worklfx9019.
(Default mapping)

Model Technology ModelSim SE-64 vlog 6.4a Compiler 2008.08 Aug 28 2008

-- Compiling module d9019

Top level modules:
doo19

B T2

Reading /mathworks/hub/share/apps/HDLTools/ModelSim/modelsim-6.4a-tmw-000/se/modeltech/tcl

/vsim/pref.tcl
6.4a
vsim -do exit -foreign {matlabclient /tmp/lfmconfig/linux64/liblfmhdlc_tmwgcc.so}

-noautoldlibpath -c¢ worklfx9019.d9019
// ModelSim SE-64 6.4a Aug 28 Linux 2.6.22.8-mw017

Loading work.d9019
Loading /tmp/lfmconfig/linux64/1liblfmhdlc_tmwgcc.so

exit

B T2

Diagnosing and Customizing Your Setup for Use with the HDL Simulator and EDA Simulator Link™ Software

EDA Simulator Link libraries loaded successfully.

L S I e 2t

Next, the script checks a TCP connection. If you choose to skip this step, the
configuration file specifies use of shared memory. Both shared memory and
socket configurations are in the configuration file; depending on your choice,
one configuration or the other is commented out.

Press Enter to check for TCP connection or enter 'n' to skip this test:

Enter an available port [5001]

Enter remote host [localhost]

Press Enter to continue

ttcp_glnx -t -p5001 localhost
Connection successful

Lastly, the script creates the configuration file, unless for some reason you
choose not to do so at this time.

hokkkkkkkk ko kkkkkkhk kA k ok ok kA Ak ok kA k ok ok kA kk ok kA kkkhk kA kkkkkkkkkkkkk kA kkkkkkk k%

Press Enter to Create Configuration files or 'n' to skip this step:

hokkkkkkkk ke kk ok ok kk ko k kA ok ok k kR Ak ok ok h kA k ok ok kA Ak k ok kA kkk kA kkkhhkkkkkkhhk kA kkkkkkk k%

Created template files simulink9675.arg and matlab8675.arg. Inspect and modify

if necessary.

R R R R R R R R SRR R R R R R R R R R R R R R R R R SRR R R R R R SRR RS R RS EE RS
Diagnosis Completed

The template file names, in this example simulink24255.arg and
matlab24255.arg, have different names each time you run this script.

After the script is complete, you can leave the configuration files where they
are or move them to wherever it is convenient.

6-9

6 Additiondl Deployment Options

6-10

Running the Configuration and Diagnostic Script for Cadence Incisive
(syscheckin)

Start the script by typing syscheckin at a system prompt. The system
returns the following information:

o

% syscheckin

B R]

Kernel name: Linux
Kernel release: 2.6.22.8-mw017
Machine: x86_64

R

The script first returns the location of the HDL simulator installation
(ncsim.exe). If it does not find an installation, you receive an error message.
Either provide the path to the installation or quit the script and install the
HDL simulator. You are then prompted to accept this installation or provide
a path to another one, after which you receive a message confirming the HDL
simulator installation:

Found /hub/share/apps/HDLTools/IUS/IUS-61-tmw-000/1nx/tools/bin/64bit/ncsim on the path.

Press Enter to use the path we found or enter another one:

L R R R

/hub/share/apps/HDLTools/IUS/IUS-61-tmw-000/1nx/tools/bin/64bit/ncsim -version
TOOL: ncsim(64) 06.11-s005

Cadence Incisive mode: 64 bits

L R R R R

Next, the script needs to know where it can find the EDA Simulator Link
libraries.

Select method to search for EDA Simulator Link libraries:

1. Use libraries in a MATLAB installation.

2. Prompt me to specify the direct path to the libraries.

2

Enter the path to liblfihdlc_gcc323.so and liblfihdls_gcc323.so0:
tmp/extensions/incisive/linux64

Diagnosing and Customizing Your Setup for Use with the HDL Simulator and EDA Simulator Link™ Software

Found /tmp/extensions/incisive/linux64/1iblfihdlc_gcc323.s0
and /tmp/extensions/incisive/linux64/1iblfihdls_gcc323.so0.

The script then runs a dependency checker to check for supporting libraries.
If any of the libraries cannot be found, you probably need to append your
environment path to find them.

B T T T2

Running dependency checker "ldd /tmp/extensions/incisive/linux64/liblfihdlc_gcc323.s0".
Dependency checker passed.
Dependency status:
librt.so.1 => /lib/librt.so.1 (0x00002b6119631000)
libstdc++.s0.5 => /usr/lib/libstdc++.s0.5 (0x00002b611973a000)
libm.so.6 => /lib/libm.so0.6 (0x00002b6119916000)
libgcc_s.so.1 => /lib/libgcc_s.so.1 (0x00002b6119a99000)
libc.s0.6 => /lib/libc.so0.6 (0x00002b6119ba6000)
libpthread.so.0 => /lib/libpthread.so.0 (0x00002b6119de3000)
/1ib64/1d-1inux-x86-64.50.2 (0x0000555555554000)

B T T T2

This next step loads the EDA Simulator Link libraries and compiles a test
module to verify the libraries loaded correctly.

Press Enter to load EDA Simulator Link or enter 'n' to skip this test:

ncvlog(64): 06.11-s005: (c) Copyright 1995-2007 Cadence Design Systems, Inc.

define linux64 /work/matlab/toolbox/incisive/linux64

ncsim> exit

hokkkkkkkk ko kkkkkkhkkkk ok ok ok kA Ak ok ok ko kA k ok kA Ak k ok kA kk kA kkk ko kkkkhhkkkkkkkkkkk *

EDA Simulator Link libraries loaded successfully.

hokkkkkkkk ko kkkkkk ok kk ok ok k kA Ak ok ok kkk ok kA Ak k ok kA kkkhkkhkkkkkhhkkkkkkkkkkkkkkkkkkk *

Next, the script checks a TCP connection. If you choose to skip this step, the
configuration file specifies use of shared memory. Both shared memory and

6-11

6 Additiondl Deployment Options

socket configurations are in the configuration file; depending on your choice,
one configuration or the other is commented out.

Press Enter to check for TCP connection or enter 'n' to skip this test:
Enter an available port [5001]

Enter remote host [localhost]

Press Enter to continue

ttcp_glnx -t -p5001 localhost
Connection successful

Lastly, the script creates the configuration file, unless for some reason you
choose not to do so at this time.

hkkkkkkkk ko kkkkkk ko kk ok ok k kA Ak ok ok kkk ok ok kA Ak ok kA kkkhk kA kkkhkk kA Ak kkkk kA kkkkkkk k%

Press Enter to Create Configuration files or 'n' to skip this step:

hokkkkkkkk ko kk ok ok ok kkkkh ok ok ok kA Ak ok ok k Ak ok kA Ak k ok kA kkk ok kA kkkhhkkkkkkkhk kA kkkkkkk k%

Created template files simulink9675.arg and matlab8675.arg. Inspect and modify

if necessary.

R SRR R R R R R R RS R R R EE RS
Diagnosis Completed

The template file names, in this example simulink24255.arg and
matlab24255.arg, have different names each time you run this script.

After the script is complete, you can leave the configuration files where they
are or move them to wherever it is convenient.

6-12

Diagnosing and Customizing Your Setup for Use with the HDL Simulator and EDA Simulator Link™ Software

Using the Configuration and Diagnostic Script with
Windows

The setup script does not run on Windows. However, if your HDL simulator
runs on Windows, you can use the configuration script on Windows by
following these instructions:

1 Create a MATLAB configuration file. You may name it whatever you like;
there are no file-naming restrictions. Enter the following text:

//Command file forEDA Simulator Link MATLAB library

//for use with Mentor Graphics ModelSim.

//Loading of foreign Library, usage example: vsim -f matlab14455.arg entity.
//You can manually change the following line to point to the correct library.
//The default location of the 32-bit Windows library is at

/ IMATLABROOT/toolbox/edalink/extensions/modelsim/windows32/1iblfmhdlc_tmwvs.dll.

-foreign "matlabclient c:/path/liblfmhdlc_tmwvs.dll"

where path is the path to the particular EDA Simulator Link shared
library you want to invoke (in this example. See “Using the EDA Simulator
Link Libraries for HDL Cosimulation”).

For more information on the -foreign option, refer to the ModelSim
documentation.

The comments in the above text are optional.

2 Create a Simulink configuration file and name it. There are no file-naming
restrictions. Enter the following text:

//Command file for EDA Simulator Link Simulink library

//for use with Mentor Graphics ModelSim.

//Loading of foreign Library, usage example: vsim -f simulink14455.arg entity.
//You can manually change the following line to point to the correct library.
//For example the default location of the 32-bit Windows library is at

/ IMATLABROOT/toolbox/edalink/extensions/modelsim/windows32/1iblfmhdls_tmwvs.dl1l.

//For socket connection uncomment and modify the following line:

-foreign "simlinkserver c:/path/liblfmhdls_tmwvs.dll ; -socket 5001"

6-13

6 Additiondl Deployment Options

//For shared connection uncomment and modify the following line:

//-foreign "simlinkserver c:/path/liblfmhdls_tmwvs.d1ll"

Where path is the path to the particular EDA Simulator Link shared
library you want to invoke. See “Using the EDA Simulator Link Libraries
for HDL Cosimulation”.

Note If you are going to use a TCP/IP socket connection, first confirm that
you have an available port to put in this configuration file. Then, comment
out whichever type of communication you will not be using.

The comments in the above text are optional.

After you have finished creating the configuration files, you can leave the files
where they are or move them to another location that is convenient.

6-14

Performing Cross-Network Cosimulation

Performing Cross-Network Cosimulation

In this section...

“Why Perform Cross-Network Cosimulation?” on page 6-15

“Preparing for Cross-Network Cosimulation (MATLAB or Simulink)” on
page 6-15

“Performing Cross-Network Cosimulation with the HDL Simulator and
MATLAB” on page 6-18

“Performing Cross-Network Cosimulation with the HDL Simulator and
Simulink” on page 6-22

Why Perform Cross-Network Cosimulation?

You can perform cross-network cosimulation when your setup comprises one
machine running MATLAB and Simulink software and another machine
running the HDL simulator. Typically, a Windows-platform machine runs
the MATLAB and Simulink software, while a Linux machine runs the HDL
simulator. However, these procedures apply to any combination of platforms
that EDA Simulator Link and the HDL simulator support.

Preparing for Cross-Network Cosimulation (MATLAB
or Simulink)

Before you cosimulate between the HDL simulator and MATLAB or Simulink
across a network, perform the following steps:

1 Create your design and testing files.

ModelSim Users

® Create and compile your HDL design, and create your MATLAB
function (for MATLAB cosimulation) or Simulink model (for Simulink
cosimulation).

e If you are going to cosimulate with Simulink, use the -novopt option
when you compile so that the design is not optimized, and include the
-novopt option when you issue the vsim command (see “Performing
Cross-Network Cosimulation with the HDL Simulator and Simulink”

6-15

6 Additiondl Deployment Options

6-16

on page 6-22). Using the -novopt option retains some unused signals
from the design which are required by the Simulink model to run and
display the results.

Incisive Users

Create, compile, and elaborate your HDL design, and create your MATLAB
function (for MATLAB cosimulation), or Simulink model (for Simulink
cosimulation).

Discovery Users

Create your HDL design, MATLAB function (for MATLAB cosimulation),
or Simulink model (for Simulink cosimulation).
Copy EDA Simulator Link libraries to the machine with the HDL simulator

a Go to the system where you installed MATLAB. Then, find the folder
in the MATLAB distribution where the EDA Simulator Link libraries
reside.

You can usually find the libraries in the default installed folder:

matlabroot/toolbox/edalink/extensions/adaptor/platform/productlibraryname_

compiler_tag.ext

where the variable shown in the following table have the values
indicated.

Variable Value

matlabroot The location where you installed the
MATLAB software; default value is
"MATLAB/version" where version is the
installed release (for example, R2009a).

adaptor incisive, modelsim, or discovery

Performing Cross-Network Cosimulation

Variable Value

platform The operating system of the machine with
the HDL simulator, for example, linux32.
(For more information, see “Using the
EDA Simulator Link Libraries for HDL
Cosimulation”.)

productlibraryname The name of the library files for MATLAB
and for Simulink (for example, liblfmhdlc,
liblfmhdls for ModelSim users; liblfihdlc,
liblfihdls for Incisive users; liblfdhdle,
liblfdhdls for Discovery users).

See “Using the EDA Simulator Link
Libraries for HDL Cosimulation”.

compiler tag The compiler used to create the library
(for example, gce32 or spro). For
more information, see “Using the EDA
Simulator Link Libraries for HDL

ext dll (dynamic link library—Windows only)
or so (shared library extension)

For a list of all the EDA Simulator Link HDL shared libraries shipped,
see “Default Libraries” in “Using the EDA Simulator Link Libraries for
HDL Cosimulation”.

b From the MATLAB machine, copy the EDA Simulator Link libraries
you plan to use (which you determined in step 2) to the machine where

6-17

6 Additiondl Deployment Options

6-18

you installed the HDL simulator. Make note of the location to which
you copied the link libraries; you'll need this information when you are
actually establishing the link. For purposes of this example, the sample
code refers to the destination folder as "HDLSERVER_LIB_LOCATION".

If you now want to cosimulate with MATLAB, see “Performing Cross-Network
Cosimulation with the HDL Simulator and MATLAB” on page 6-18. If

you want to cosimulate with Simulink, see “Performing Cross-Network
Cosimulation with the HDL Simulator and Simulink” on page 6-22.

Performing Cross-Network Cosimulation with the
HDL Simulator and MATLAB

To perform an HDL-simulator-to-MATLAB cosimulation session across a
network, follow these steps:

ModelSim Users

1 In MATLAB, get an available socket using hdldaemon:

hdldaemon('socket',0)

Or assign one (that you know is available):

hdldaemon('socket',4449)

2 On the machine with the HDL simulator, launch the HDL simulator from a
shell with the following command:

vsim -foreign "matlabclient /HDLSERVER_LIB_LOCATION/library_name;" design_name

where the arguments shown in the following table have the values
indicated.

Performing Cross-Network Cosimulation

Argument Value

library name The name of the library you
copied to the machine with the
HDL simulator (in “Preparing
for Cross-Network Cosimulation
(MATLAB or Simulink)” on page
6-15).

design_name The VHDL or Verilog design you
want to load

3 In the HDL simulator, schedule the test bench or component (matlabcp or
matlabtb). Specify the socket port number from step 1 and the name of
the host machine where hdldaemon is running.

Incisive Users

1 In MATLAB, get an available socket using hdldaemon:

hdldaemon('socket',0)

Or assign one:

hdldaemon('socket',4449)

2 Create a MATLAB configuration file (for loading the functions used in the
HDL simulator) with the following contents:

//Command file for MATLAB EDA Simulator Link.
//Loading of foreign Library and HDL simulator functions.

-loadcfc /HDLSERVER_LIB_LOCATION/library name:matlabclient

//TCL wrappers for MATLAB commands

-input @proc" "nomatlabtb" "{args}" "{call" "nomatlabtb" "\$args}
-input @proc" "matlabtb" "{args}" "{call" "matlabtb" "\$args}

-input @proc" "matlabcp" "{args}" "{call" "matlabcp" "\$args}

-input @proc" "matlabtbeval" "{args}" "{call" "matlabtbeval" "\$args}

6-19

6 Additiondl Deployment Options

6-20

Where library_name is the name of the library you copied in “Preparing for
Cross-Network Cosimulation (MATLAB or Simulink)” on page 6-15. You
may name this configuration file anything you like.

3 On the machine with the HDL simulator, launch the HDL simulator from a
shell with the following command:

ncsim -gui -f matlab_config.file design_name

where the arguments shown in the following table have the values
indicated.

Argument Value

matlab_config.file The name of the MATLAB
configuration file (from step 3)

design _name The VHDL or Verilog design you
want to load

4 In the HDL simulator, schedule the test bench or component (matlabcp or
matlabtb). Specify the socket port number from step 1 and the name of the
host where hdldaemon is running.

Discovery Users

1 In MATLAB, get an available socket using hdldaemon:

hdldaemon('socket',0)

Or assign one:

hdldaemon('socket',4449)

2 Create a file containing pre-simulation Tcl commands to specify the Tecl
commands to execute in the HDL simulator before the simulation is run;
for example, commands for scheduling the function and adding signals.

For example (from Filter demo):

preSimTclCmds = { ...

‘matlabtb lowpass_filter 10ns -repeat 10ns -mfunc lpfiltertestbench

Performing Cross-Network Cosimulation

-socket 4890@mymatlabcomputer ',...
'force lowpass_filter.clk_enable 1 Ons',...
'force lowpass_filter.reset 1 Ons, 0 22ns',..
'force lowpass_filter.clk 1 Ons, 0 5ns -repeat 10ns',...
'force lowpass_filter.filter_in O -deposit'...
s

Save these contents in a file named tmwESLDS.presim. tcl. This is the file
the auto-generated scripts look for.

Note You must specify the socket to be used for communication in
these pre-simulation Tcl commands when linking the HDL simulator to
MATLAB.

3 On the machine with the HDL simulator, edit and customize
the auto-generated scripts created by a call to launchDiscovery
(tmwESLDS.compile.sh and tmwESLDS. launch.sh). You can either modify
existing scripts or run launchDiscovery to create new scripts (see Filter
demo for an example).

In these scripts you must specify:

¢ The EDA Simulator Link library file (from “Preparing for Cross-Network
Cosimulation (MATLAB or Simulink)” on page 6-15)

The library path for EDA Simulator Link library

¢ The names of and paths to HDL files and signal access files

The top level of the design
® Make sure that ${LOAD_ML_LIB} is included on the vcs line

Note You must specify the communication socket with your call to
matlabcp or matlabtp in the pre—simulation Tcl commands file. The
SL_LIB_SOCKET variable in the compile and launch scripts is for a Simulink
connection only.

4 Run the compile script in a shell:

6-21

6 Additiondl Deployment Options

6-22

sh> . tmwgESLDS.compile.sh

5 Run the launch script in a shell:

sh> . tmwgSLDS.launch.sh

6 Once the HDL simulator is launched, begin the simulation using the
run command in the HDL simulator console, specifying the appropriate
simulation time. For example type:

dve>run 100000
Performing Cross-Network Cosimulation with the
HDL Simulator and Simulink

When you want to perform an HDL-simulator-to-Simulink cosimulation
session across a network, follow these steps:

ModelSim Users

1 Launch the HDL simulator from a shell with the following command:

vsim -foreign "simlinkserver /HDLSERVER_LIB_LOCATION/Iibrary_name;

-socket socket_num" -novopt design_name

where the arguments shown in the following table have the values
indicated.

Argument Value

library name The name of the library you
copied to the machine with the
HDL simulator (in “Preparing
for Cross-Network Cosimulation
(MATLAB or Simulink)” on page
6-15).

socket_num The socket number you have chosen
for this connection

design _name The VHDL or Verilog design you
want to load

Performing Cross-Network Cosimulation

2 On the machine with MATLAB and Simulink, start Simulink and open
your Simulink model.

3 Double-click on the HDL Cosimulation block to open the Function Block
Parameters dialog box.

4 Click on the Connections tab.

a Clear “The HDL simulator is running on this computer.” The Connection
method is automatically changed to Socket.

b In the text box labeled Host name, enter the host name of the machine
where the HDL simulator is located.

¢ In the text box labeled Port number or service, enter the socket
number from step 1.

d Click OK to exit block dialog box, and save your changes.
Incisive Users

1 Launch the HDL simulator from a shell with the following command:

ncsim -gui -loadvpi "/HDLSERVER_LIB_LOCATION/Iibrary name:simlinkserver"
+socket=socket_num design_name

where the arguments shown in the following table have the values
indicated.

Argument Value

library name The name of the library you
copied to the machine with the
HDL simulator (in “Preparing
for Cross-Network Cosimulation
(MATLAB or Simulink)” on page
6-15).

socket_num The socket number you have chosen
for this connection

design_name The VHDL or Verilog design you
want to load

6-23

6 Additiondl Deployment Options

2 On the machine with MATLAB and Simulink, start Simulink and open
your Simulink model.

3 Double-click on the HDL Cosimulation block to open the Function Block
Parameters dialog box.

4 Click on the Connections tab.

a Clear the check box labeled The HDL simulator is running on this
computer. The Connection method is automatically changed to Socket.

b In the Host name box, enter the host name of the machine where the
HDL simulator is located.

¢ In the Port number or service box, enter the socket number from
step 1.

d Click OK to exit block dialog box, and save your changes.
Discovery Users

1 On the machine with the HDL simulator, edit and customize the scripts
created by a call to launchDiscovery (tmwESLDS.compile.sh and
tmwESLDS. launch.sh). You can either modify existing scripts or run
launchDiscovery to create new scripts (see Gain demo for an example).
In these scripts you must specify:

¢ The EDA Simulator Link library file (from “Preparing for Cross-Network
Cosimulation (MATLAB or Simulink)” on page 6-15)

The library path for EDA Simulator Link library
A socket number (SL_LIB_SOCKET)—specify any available

The names of and paths to HDL files and signal access files

The top level of the design
® Make sure that ${LOAD_SL_LIB} is included on the vcs line

2 Run the compile script in a shell:

sh> . tmwESLDS.compile.sh

3 Run the launch script in a shell:

6-24

Performing Cross-Network Cosimulation

sh> . tmwgSLDS.launch.sh

4 In the HDL simulator, start the HDL simulation.

5 On the machine with MATLAB and Simulink, start Simulink and open
your Simulink model.

6 Double-click on the HDL Cosimulation block to open the Function Block
Parameters dialog box.

7 Click on the Connections tab.

a Clear “The HDL simulator is running on this computer.” The Connection
method is automatically changed to Socket.

b In the text box labeled Host name, enter the host name of the machine
where the HDL simulator is located.

¢ In the text box labeled Port number or service, enter the socket
number that you specified in the scripts.

d Click OK to exit block dialog box, and save your changes.

Next, run your simulation, add more blocks, or make other desired changes.
For instructions on using Simulink and the HDL simulator for cosimulation,
see Chapter 3, “Simulating an HDL Component in a Simulink Test Bench
Environment” or Chapter 4, “Replacing an HDL Component with a Simulink
Algorithm”.

6-25

6 Additiondl Deployment Options

6-26

Establishing EDA Simulator Link Machine Configuration
Requirements

In this section...

“Valid Configurations For Using the EDA Simulator Link Software with
MATLAB Applications” on page 6-26

“Valid Configurations For Using the EDA Simulator Link Software with
Simulink Software” on page 6-27

Valid Configurations For Using the EDA Simulator
Link Software with MATLAB Applications

The following list provides samples of valid configurations for using the HDL
simulator and the EDA Simulator Link software with MATLAB software.
The scenarios apply whether the HDL simulator is running on the same

[0)

r different computing system as the MATLAB software. In a network

configuration, you use an Internet address in addition to a TCP/IP socket port
to identify the servers in an application environment.

An HDL simulator session linked to a MATLAB function foo through a
single instance of the MATLAB server

An HDL simulator session linked to multiple MATLAB functions (for
example, foo and bar) through a single instance of the MATLAB server

An HDL simulator session linked to a MATLAB function foo through
multiple instances of the MATLAB server (each running within the scope
of a unique MATLAB session)

Multiple HDL simulator sessions each linked to a MATLAB function foo
through multiple instances of the MATLAB server (each running within
the scope of a unique MATLAB session)

Multiple HDL simulator sessions each linked to a different MATLAB
function (for example, foo and bar) through the same instance of the
MATLAB server

Multiple HDL simulator sessions each linked to MATLAB function foo
through a single instance of the MATLAB server

Establishing EDA Simulator Link™ Machine Configuration Requirements

Although multiple HDL simulator sessions can link to the same MATLAB
function in the same instance of the MATLAB server, as this configuration
scenario suggests, such links are not recommended. If the MATLAB
function maintains state (for example, maintains global or persistent
variables), you may experience unexpected results because the MATLAB
function does not distinguish between callers when handling input and
output data. If you must apply this configuration scenario, consider
deriving unique instances of the MATLAB function to handle requests

for each HDL entity.

Notes

Shared memory communication is an option for configurations that require
only one communication link on a single computing system.

TCP/IP socket communication is required for configurations that use
multiple communication links on one or more computing systems. Unique
TCP/TP socket ports distinguish the communication links.

In any configuration, an instance of MATLAB can run only one instance of
the EDA Simulator Link MATLAB server (hdldaemon) at a time.

In a TCP/IP configuration, the MATLAB server can handle multiple client
connections to one or more HDL simulator sessions.

Valid Configurations For Using the EDA Simulator
Link Software with Simulink Software

The following list provides samples of valid configurations for using the HDL
simulator and the EDA Simulator Link software with Simulink software.
The scenarios apply whether the HDL simulator is running on the same or
different computing system as the MATLAB or Simulink products. In a
network configuration, you use an Internet address in addition to a TCP/IP
socket port to identify the servers in an application environment.

¢ An HDL Cosimulation block in a Simulink model linked to a single HDL

simulator session

6-27

6 Additiondl Deployment Options

e Multiple HDL Cosimulation blocks in a Simulink model linked to the same
HDL simulator session

® An HDL Cosimulation block in a Simulink model linked to multiple HDL
simulator sessions

e Multiple HDL Cosimulation blocks in a Simulink model linked to different
HDL simulator sessions

Notes

e HDL Cosimulation blocks in a Simulink model can connect to the same or
different HDL simulator sessions.

e TCP/IP socket communication is required for configurations that use
multiple communication links on one or more computing systems. Unique
TCP/TP socket ports distinguish the communication links.

e Shared memory communication is an option for configurations that require
only one communication link on a single computing system.

6-28

Specifying TCP/IP Socket Communication

Specifying TCP/IP Socket Communication

In this section...

“Communication Modes and Socket Ports” on page 6-29
“Choosing TCP/IP Socket Ports” on page 6-30
“Specifying TCP/IP Values” on page 6-32

“TCP/IP Services” on page 6-33

Communication Modes and Socket Ports

Depending on your particular configuration (for example, when the MATLAB
software and the HDL simulator reside on separate machines), when
creating an EDA Simulator Link MATLAB application or defining the

block parameters of an HDL Cosimulation block, you may need to identify
the TCP/IP socket port number or service name (alias) to be used for EDA
Simulator Link connections.

To use the TCP/IP socket communication, you must choose a TCP/IP socket
port number for the server component to listen on that is available in your
computing environment. Client components can connect to a specific server
by specifying the port number on which the server is listening. For remote
network configurations, the Internet address helps distinguish multiple
connections.

The socket port resource is associated with the server component of an EDA
Simulator Link configuration. That is, if you use MATLAB in a test bench
configuration, the socket port is a resource of the system running MATLAB. If
you use a Simulink design in a cosimulation configuration, the socket port is a
resource of the system running the HDL simulator.

For any given command or function, if you specify TCP/IP socket mode, you
must also identify a socket port to be used for establishing links. You can
choose and then specify a socket port yourself, or you can use an option that
instructs the operating system to identify an available socket port for you.
Regardless of how you identify the socket port, the socket you specify with the
HDL simulator must match the socket being used by the server.

6-29

6 Additiondl Deployment Options

6-30

The port can be a TCP/IP port number, TCP/IP port alias or service name,
or the value zero, indicating that the port is to be assigned by the operating
system. See “Specifying TCP/IP Values” on page 6-32 for some valid examples.

Note You must use TCP/IP socket communication when your application
configuration consists of multiple computing systems.

For more information on choosing TCP/IP socket ports, see “Choosing TCP/TP
Socket Ports” on page 6-30.

For more information on modes of communication, see “Communications for
HDL Cosimulation”. For more information on establishing the HDL simulator
end of the communication link, see “Using EDA Simulator Link with HDL
Simulators .

Choosing TCP/IP Socket Ports

A TCP/IP socket port number (or alias) is a shared resource. To avoid potential
collisions, particularly on servers, you should use caution when choosing a
port number for your application. Consider the following guidelines:

¢ If you are setting up a link for MATLAB, consider the EDA Simulator Link
option that directs the operating system to choose an available port number
for you. To use this option, specify 0 for the socket port number.

® Choose a port number that is registered for general use. Registered ports
range from 1024 to 49151.

e If you do not have a registered port to use, review the list of assigned
registered ports and choose a port in the range 5001 to 49151 that is not in
use. Ports 1024 to 5000 are also registered, however operating systems use
ports in this range for client programs.

Consider registering a port you choose to use.

® Choose a port number that does not contain patterns or have a known
meaning. That is, avoid port numbers that more likely to be used by others
because they are easier to remember.

Specifying TCP/IP Socket Communication

® Do not use ports 1 to 1023. These ports are reserved for use by the Internet
Assigned Numbers Authority (IANA).

® Avoid using ports 49152 through 65535. These are dynamic ports that
operating systems use randomly. If you choose one of these ports, you risk
a potential port conflict.

e TCP/IP port filtering on either the client or server side can cause the EDA
Simulator Link interface to fail to make a connection.

In such cases the error messages displayed by the EDA Simulator Link
interface indicate the lack of a connection, but do not explicitly indicate the
cause. A typical scenario caused by port filtering would be a failure to start
a simulation in the HDL simulator, with the following warning displayed
in the HDL simulator if the simulation is restarted:

#MLWarn - MATLAB server not available (yet),
The entity 'entityname' will not be active

In MATLAB, checking the server status at this point indicates that the
server is running with no connections:

x=hdldaemon('status')
HDLDaemon server is running with O connections
X:

4449

6-31

6 Additiondl Deployment Options

6-32

Windows Users If you suspect that your chosen socket port is filtered, you
can check it as follows:

1 From the Windows Start menu, select Settings > Network Connections.

2 Select Local Area Connection from the Network and Dialup
Connections window.

3 From the Local Area Connection dialog
box, select Properties > Internet Protocol
(TCP/IP > Properties > Advanced > Options > TCP/IP
filtering > Properties.

4 If your port is listed in the TCP/IP filtering Properties dialog, you
should select an unfiltered port. The easiest way to do this is to specify 0
for the socket port number to let the EDA Simulator Link software choose
an available port number for you.

Specifying TCP/IP Values

Specifies TCP/IP socket communication for links between the HDL simulator
and Simulink software. For TCP/IP socket communication on a single
computing system, the <tcp_spec> parameter of matlabcp or matlabtb can
consist of just a TCP/IP port number or service name. If you are setting up
communication between computing systems, you must also specify the name
or Internet address of the remote host.

If the HDL simulator and MATLAB are running on the same system, the
TCP/IP specification identifies a unique TCP/IP socket port to be used for
the link. If the two applications are running on different systems, you must
specify a remote host name or Internet address in addition to the socket port.

The following table lists different ways of specifying tcp_spec.

Format Example
<port-num> 4449
<port-alias> matlabservice

Specifying TCP/IP Socket Communication

Format Example

<port-num>@<host> 4449@compa
<host>:<port-num> compa:4449
<port-alias>@<host-ia> matlabservice@123.34.55.23

An example of a matlabcp call using port 4449 might look like this (examples
shown for use with ModelSim):

> matlabcp u_osc_filter -mfunc oscfilter -socket 4449

A remote connection might look like this:

> matlabcp u_osc_filter -mfunc oscfilter -socket computer93:4449

TCP/IP Services

By setting up the MATLAB server as a service, you can run the service in the
background, allowing it to handle different HDL simulator client requests
over time without you having to start and stop the service manually each time.
Although it makes less sense to set up a service for the Simulink software as
you cannot really automate the starting of an HDL simulator service, you
might want to use a service with Simulink to reserve a TCP/IP socket port.

Services are defined in the etc/services file located on each computer;
consult the User’s Guide for your particular operating system for instructions
and more information on setting up TCP/IP services.

For remote connections, the service name must be set up on both the client
and server side. For example, if the service name is "matlabservice" and
you are performing a Windows-Linux cross-platform simulation, the service
name must appear in the service file on both the Windows machine and the
Linux machine.

6-33

6 Additiondl Deployment Options

6-34

Improving Simulation Speed

In this section...

“Obtaining Baseline Performance Numbers” on page 6-34
“Analyzing Simulation Performance” on page 6-34

“Cosimulating Frame-Based Signals with Simulink” on page 6-36

Obtaining Baseline Performance Numbers

You can baseline the performance numbers by timing the execution of the
HDL and the Simulink model separately and adding them together; you
may not expect better performance than that. Make sure that the separate
simulations are representative: running an HDL-only simulator with
unrealistic input stimulus could be much faster than when proper input
stimulus is provided.

Analyzing Simulation Performance

While cosimulation entails a certain amount of overhead, sometimes the HDL
simulation itself also slows performance. Ask yourself these questions when
trying to analyze and improve performance:

Consideration Suggestions for Improving
Speed

Are you are using NFS or other How fast is the file system? Consider

remote file systems? using a different type or expect that

the file system you’re using will
impact performance.

Are you using separate machines for | How fast is the network? Wait until
Simulink and the HDL simulator? the network is quieter or contact
your system administrator for advice
on improving the connection.

Improving Simulation Speed

Consideration

Suggestions for Improving
Speed

Are you using the same machine for
Simulink and the HDL simulator?

® Are you using shared pipes
instead of sockets? Shared
memory is faster.

® Are the Simulink and HDL
processes large enough to cause
swaps to disk? Consider adding
more memory; otherwise be
aware that you're running a huge
process and expect it to impact
performance.

Are you using optimal (that is, as
large as possible) Simulink sample
rates on the HDL Cosimulation
block?

For example, if you set the output
sample rate to 1 but only use every
10th sample, you could make the rate
10 and reduce the traffic between
Simulink and the HDL simulator.

Another example is if you place

a very fast clock as an input to

the HDL Cosimulation block, but
have none of the other inputs need
such a fast rate. In that case, you
should generate the clock in HDL or
(Incisive and ModelSim users only)
via the Clocks or Tecl pane on the
HDL Cosimulation block.

ModelSim users: Are you
compiling/elaborating the HDL
using the vopt flow?

Use vopt to optimize your design for
maximum (HDL) simulator speed
(ModelSim users only).

Are you using Simulink
Accelerator™ mode?

Acceleration mode can speed

up the execution of your model.
See "Accelerating Models” in the
Simulink User’s Guide.

If you have the Communications
Blockset software, have you
considered using Framed signals?

Framed signals reduce the number
of Simulink/HDL interactions.

6-35

6 Additiondl Deployment Options

6-36

Cosimulating Frame-Based Signals with Simulink

Overview to Cosimulation with Frame-Based Signals

Frame-based processing can improve the computational time of your
Simulink models, because multiple samples can be processed at once. Use
of frame-based signals also lets you simulate the behavior of frame-based
systems more accurately. The HDL Simulator block supports processing of
single-channel frame-based signals.

A frame of data is a collection of sequential samples from a single channel or
multiple channels. One frame of a single-channel signal is represented by a
M-Dby-1 column vector. A signal is frame based if it is propagated through a
model one frame at a time.

Frame-based processing requires the Signal Processing Blockset software.
Source blocks from the Signal Processing Sources library let you specify a
frame-based signal by setting the Samples per frame block parameter. Most
other signal processing blocks preserve the frame status of an input signal.
You can use the Buffer block to buffer a sequence of samples into frames.

See “Working with Signals” in the Signal Processing Blockset documentation
for detailed information about frame-based processing.

Using Frame-Based Processing

You do not need to configure the HDL Simulator block in any special way for
frame-based processing. To use frame-based processing in a cosimulation,
connect one or more single-channel frame-based signals to one or more

input ports of the HDL Simulator block. All such signals must meet the
requirements described in “Frame-Based Processing Requirements and
Restrictions” on page 6-37. The HDL Simulator block automatically configures
any outputs for frame-based operation at the appropriate frame size.

Use of frame-based signals affects only the Simulink side of the cosimulation.
The behavior of the HDL code under simulation in the HDL simulator does
not change in any way. Simulink assumes that HDL simulator processing is
sample based. Simulink assembles samples acquired from the HDL simulator
into frames as required. Conversely, Simulink transmits output data to the

Improving Simulation Speed

HDL simulator in frames, which are unpacked and processed by the HDL
simulator one sample at a time.

Frame-Based Processing Requirements and Restrictions

Observe the following restrictions and requirements when connecting
frame-based signals in to an HDL Simulator block:

¢ Connection of mixed frame-based and sample-based signals to the same
HDL Simulator block is not supported.

¢ Only single-channel frame-based signals can be connected to the HDL
Simulator block. Use of multichannel (matrix) frame-based signals is not
supported in this release.

e All frame-based signals connected to the HDL Simulator block must have
the same frame size.

Frame-based processing in the Simulink model is transparent to the operation
of the HDL model under simulation in the HDL simulator. The HDL model
is presumed to be sample-based. The following constraint also applies to the
HDL model under simulation in the HDL simulator:

Specify VHDL signals as scalars values, not vectors or arrays (with the
exception of bit vectors, as VHDL and Verilog bit vectors are converted
to the appropriately sized fixed-point scalar data type by the HDL
Cosimulation block).

Frame-Based Cosimulation Example

This example shows the use of the HDL Simulator block to cosimulate a
VHDL implementation of a simple lowpass filter. In the example, you
will compare the performance of the simulation using frame-based and
sample-based signals.

Note This tutorial is specific to ModelSim users; however, much of the
process will be the same for Incisive and Discovery users.

The example files are:

6-37

6 Additiondl Deployment Options

® The example model:

matlabroot\toolbox\edalink\extensions\modelsim\modelsimdemos\frame_filter_cosim.mdl

e VHDL code for the filter to be cosimulated:

matlabroot\toolbox\edalink\extensions\modelsim\modelsimdemos\VHDL\frame_demos\1lp_fir_8k.vhd

The filter was designed with FDATool and the code was generated by the
Filter Design HDL Coder.

The example uses the data file
matlabroot\toolbox\signal\signal\mtlb.mat as an input signal. This
file contains a speech signal. The sample data is of data type double,
sampled at a rate of 8 kHz.

The next figure shows the frame_filter cosim.mdl model.

HOL
mibrn. 3z oouble BOR lher in '"5 filter_out |92uble BOX] |, dicbuitd
Simulator .
Audio Source Signal . : Filtered Signal
Ip_fir_8k Lowp ass Filter Ta Wotespace

From WMiakspace

The Audio Source Signal From Workspace block provides an input signal
from the workspace variable mt1b. The block is configured for an 8 kHz
sample rate, with a frame size of 80, as shown in this figure.

6-38

Improving Simulation Speed

E! Source Block Parameters: Audio Source Signal Fr x|

—Signal Fram “Waorkzpace [mask)] [link]

Output zignal zamples obtained from the MATLAE workspace at successive zample
timez. A zignal matni iz interpreted as having one channel per column, Signal
columne may be buffered into frames by specifving a number of zamples per frame
qreater than 1.

Ak w M o P ozignal amay outputs M o« M matrices at successive zample timez. The
zamples per frame must be equal to 1 for three-dimengional zsignal amays.

—Parameters

Signal:
frtib .32

Sample time;
{14800

Samplez per frame;
ER

Farm output after final data value by:l Setting to zero :I

ok I Cancel | Help |

The sample rate and frame size of the input signal propagate throughout
the model.

The VHDL code file 1p_fir_8k.vhd implements a simple lowpass FIR filter
with a cutoff frequency of 1500 Hz. The HDL Simulator block simulates this
HDL module. The HDL Simulator block ports and clock signal are configured
to match the corresponding signals on the VHDL entity.

For the ModelSim simulation to execute correctly, the clk_enable signal

of the 1p_fir 8k entity must be forced high. The signal is forced by a
pre-simulation command transmitted by the HDL Simulator block. The
command has been entered into the Tel pane of the HDL Simulator block, as
shown in the following figure (example shown for use with ModelSim).

6-39

6 Additiondl Deployment Options

6-40

E! Function Block Parameters: Ip_fir_8k Lowpass Filter x|
" Sirnulirk. and ModelSim Cosimulation

Cogimulate hardware components with ModelSim(R] simulators. [nputs from Simulink(R] are applied to HOL signals. Dutputs from thiz black are driven by
HDL signals.

Pots | Clocks | Timescales | Connection Tel |

Pre-simulation commands:

puts "Running Simulink Cosimulation block."
farce |p_fir_8k/clk_enable 1

Post-simulation carmmards:

echo "dong”

oK | Cancel | Help | Apply |

The HDL Simulator block returns output in the workspace variable
audiobuff1 via the Filtered Signal To Workspace block.

To run the cosimulation, perform the following steps:
1 Start MATLAB and make it your active window.

2 Set up and change to a writable working folder that is outside the context
of your MATLAB installation folder.

3 Add the demo folder to the MATLAB path:
matlabroot\toolbox\edalink\extensions\modelsim\modelsimdemos\frame_cosim

4 Copy the demo VHDL file 1p_fir_8k.vhd to your working folder.

5 Open the example model.

open frame_filter_cosim.mdl

6 Load the source speech signal, which will be filtered, into the MATLAB
workspace.

Improving Simulation Speed

load mtlb

If you have a compatible sound card, you can play back the source signal by
typing the following commands at the MATLAB command prompt:

a = audioplayer(mtlb,8000);
play(a);

7 Start ModelSim by typing the following command at the MATLAB
command prompt:

vsim
The ModelSim window should now be active. If not, start it.

8 At the ModelSim prompt, create a design library, and compile the VHDL
filter code from the source file 1p_fir_8k.vhd, by typing the following
commands:

vlib work
vmap work work
vcom 1lp_fir_8k.vhd

9 The lowpass filter to be simulated is defined as the entity 1p_fir_8k. At the
ModelSim prompt, load the instantiated entity 1p_fir 8k for cosimulation:

vsimulink 1lp_fir_8k

ModelSim is now set up for cosimulation.
10 Start MATLAB. Run a simulation and measure elapsed time as follows:
t = clock; sim(gcs); etime(clock,t)
ans =

2.7190

The timing in this code excerpt is typical for a run of this model given a
simulation Stop time of 1 second and a frame size of 80 samples. Timings

6-41

6 Additiondl Deployment Options

12

6-42

are system-dependent and will vary slightly from one simulation run to
the next.

Take note of the timing you obtained. For the next simulation run, you will
change the model to sample-based operation and obtain a comparative
timing.

MATLAB stores the filtered audio signal returned from ModelSim in the
workspace variable audiobuff1. If you have a compatible sound card, you
can play back the filtered signal to hear the effect of the lowpass filter. Play
the signal by typing the following commands at the MATLAB command
prompt:

b = audioplayer(audiobuff1,8000);
play(b);

Open the block parameters dialog box of the Audio Source Signal From
Workspace block and set the Samples per frame property to 1, as shown
in this figure.

E! Source Block Parameters: Audio Source Signal Fi x|

—Signal Fram “Waorkzpace [mask)] [link]

Output zignal zamples obtained from the MATLAE workspace at successive zample
timez. A zignal matni iz interpreted as having one channel per column, Signal
columne may be buffered into frames by specifving a number of zamples per frame
qreater than 1.

Ak w M o P ozignal amay outputs M o« M matrices at successive zample timez. The
zamples per frame must be equal to 1 for three-dimengional zsignal amays.

—Parameters

Signal:
frtib .32

Sample time;
{14800

Samplez per frame;
i

Farm output after final data value by:l Setting to zero :I

ok I Cancel | Help |

Improving Simulation Speed

13

14

15

16

Close the dialog box, and select the Simulink window. Select Update
diagram from the Edit menu.

The block diagram now indicates that the source signal (and all signals
inheriting from it) is a scalar, as shown in the following figure.

HOL
. double . . =k ’ double .
mtlb™0.32 ————{ filter_in =) filter_out ————{audiobufii
Simulator . .
Audio Source Signal Filterad Signal
From Wia hsp ace Ip_fir_Sk Lowpass Filter To Wokspace

Start ModelSim. At the ModelSim prompt, type

restart

Start MATLAB. Run a simulation and measure elapsed time as follows:
t = clock; sim(gcs); etime(clock,t)
ans =

3.8440

Observe that the elapsed time has increased significantly with a
sample-based input signal. The timing in this code excerpt is typical for a
sample-based run of this model given a simulation Stop time of 1 second.
Timings are system-dependent and will vary slightly from one simulation
run to the next.

Close down the simulation in an orderly way. In ModelSim, stop the

simulation by selecting Simulate > End Simulation, and quit ModelSim.

Then, close the Simulink model window.

6-43

6 Additiondl Deployment Options

6-44

Advanced Operational
Topics

* “Avoiding Race Conditions in HDL Simulators” on page 7-2

e “Performing Data Type Conversions” on page 7-5

¢ “Understanding the Representation of Simulation Time” on page 7-14
* “Driving Clocks, Resets, and Enables” on page 7-29

e “Eliminating Block Simulation Latency” on page 7-37

¢ “Defining EDA Simulator Link MATLAB Functions and Function
Parameters” on page 7-42

7 Advanced Operational Topics

Avoiding Race Conditions in HDL Simulators

In this section...

“Overview to Avoiding Race Conditions” on page 7-2
“Potential Race Conditions in Simulink Link Sessions” on page 7-2

“Potential Race Conditions in MATLAB Link Sessions” on page 7-3

“Further Reading” on page 7-4

Overview to Avoiding Race Conditions

A well-known issue in hardware simulation is the potential for
nondeterministic results when race conditions are present. Because the HDL
simulator is a highly parallel execution environment, you must write the HDL
such that the results do not depend on the ordering of process execution.

Although there are well-known coding idioms for ensuring successful
simulation of a design under test, you must always take special care at the
testbench/DUT interfaces for applying stimulus and reading results, even in
pure HDL environments. For an HDL/foreign language interface, such as with
a Simulink or MATLAB link session, the problem is compounded if there is no
common synchronization signal, such as a clock coordinating the flow of data.

Potential Race Conditions in Simulink Link Sessions

All the signals on the interface of an HDL Cosimulation block in theSimulink
library have an intrinsic sample rate associated with them. This sample
rate can be thought of as an implicit clock that controls the simulation time
at which a value change can occur. Because this implicit clock is completely
unknown to the HDL engine (that is, it is not an HDL signal), the times at
which input values are driven into the HDL or output values are sampled
from the HDL are asynchronous to any clocks coded in HDL directly, even if
they are nominally at the same frequency.

For Simulink value changes scheduled to occur at a specific simulation time,
the HDL simulator does not make any guarantees as to the order that value
change occurs versus some other blocking signal assignment. Thus, if the

Avoiding Race Conditions in HDL Simulators

Simulink values are driven/sampled at the same time as an active clock edge
in the HDL, there is a race condition.

For cases where your active HDL clock edge and your intrinsic Simulink
active clock edges are at the same frequency, you can ensure proper data
propagation by offsetting one of those edges. Because the Simulink sample
rates are always aligned with time 0, you can accomplish this offset by shifting
the active clock edge in the HDL off of time 0. If you are coding the clock
stimulus in HDL, use a delay operator ("after" or "#") to accomplish this offset.

When using a Tecl "force" command to describe the clock waveform, you can
simply put the first active edge at some nonzero time. Using a nonzero value
allows a Simulink sample rate that is the same as the fundamental clock rate
in your HDL. This example shows a 20 ns clock (so the Simulink sample rates
will also be every 20 ns) with an active positive edge that is offset from time
0 by 2 ns (example shown for use with Incisive):

> force top.clk = 1'b0 -after 0 ns 1'b1 -after 2 ns 1'b0
-after 12 ns -repeat 20 ns

For HDL Cosimulation blocks with Clock panes, you can define the clock
period and active edge in that pane. The waveform definition places the
non-active edge at time 0 and the active edge at time T/2. This placement
ensures the maximum setup and hold times for a clock with a 50% duty cycle.

If the Simulink sample rates are at a different frequency than the HDL clocks,
then you must synchronize the signals between the HDL and Simulink as you
would do with any multiple time-domain design, even one in pure HDL. For
example, you can place two synchronizing flip-flops at the interface.

If your cosimulation does not include clocks, then you must also treat the
interfacing of Simulink and the HDL code as being between asynchronous
time domains. You may need to over-sample outputs to ensure that all data
transitions are captured.

Potential Race Conditions in MATLAB Link Sessions

When you use the -sensitivity, -rising_edge, or -falling_edge scheduling
options to matlabtb or matlabcp to trigger MATLAB function calls, the
propagation of values follow the same semantics as a pure HDL design;

7-3

7 Advanced Operational Topics

you are guaranteed that the triggers must occur before the results can be

calculated. You still can have race conditions, but they can be analyzed
within the HDL alone.

However, when you use the -time scheduling option to matlabtb or matlabcp,
or use "tnext" within the MATLAB function itself, the driving of signal values
or sampling of signal values cannot be guaranteed in relation to any HDL
signal changes. It is as if the potential race conditions in that time-based
scheduling are like an implicit clock that is unknown to the HDL engine and
not visible by just looking at the HDL code.

The remedies are the same as for the Simulink signal interfacing: ensure the
sampling and driving of signals does not occur at the same simulation times
as the MATLAB function calls.

Further Reading

Problems interfacing designs from testbenches and foreign languages,
including race conditions in pure HDL environments, are well-known and
extensively documented. Some texts that describe these issues include:

® The documentation for each vendor’s HDL simulator product

e The HDL standards specifications

® Writing Testbenches: Functional Verification of HDL Models, Janick
Bergeron, 2nd edition, © 2003

e Verilog and SystemVerilog Gotchas, Stuart Sutherland and Don Mills,
© 2007

* SystemVerilog for Verification: A Guide to Learning the Testbench
Language Features, Chris Spear, © 2007

® Principles of Verifiable RTL Design, Lionel Bening and Harry D. Foster,
© 2001

Performing Data Type Conversions

Performing Data Type Conversions

In this section...
“Converting HDL Data to Send to MATLAB” on page 7-5
“Array Indexing Differences Between MATLAB and HDL” on page 7-7

“Converting Data for Manipulation” on page 7-9

“Converting Data for Return to the HDL Simulator” on page 7-10

Converting HDL Data to Send to MATLAB

If your HDL application needs to send HDL data to a MATLAB function,
you may first need to convert the data to a type supported by MATLAB and
the EDA Simulator Link software.

To program a MATLAB function for an HDL model, you must understand the
type conversions required by your application. You may also need to handle
differences between the array indexing conventions used by the HDL you are
using and MATLAB (see following section).

The data types of arguments passed in to the function determine the following:

® The types of conversions required before data is manipulated
® The types of conversions required to return data to the HDL simulator
The following table summarizes how the EDA Simulator Link software

converts supported VHDL data types to MATLAB types based on whether
the type is scalar or array.

7-5

7 Advanced Operational Topics

VHDL-to-MATLAB Data Type Conversions

VHDL Types...

As Scalar Converts to...

As Array Converts to...

STD_LOGIC, STD_ULOGIC, and
BIT

A character that matches
the character literal for the
desired logic state.

STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, and
UNSIGNED

A column vector of characters (as
defined in VHDL Conversions
for the HDL Simulator on page
7-11) with one bit per character.

Arrays of STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,

BIT VECTOR, SIGNED, and
UNSIGNED

An array of characters (as
defined above) with a size that
is equivalent to the VHDL port
size.

INTEGER and NATURAL

Type int32.

Arrays of type int32 with a size
that is equivalent to the VHDL
port size.

REAL Type double. Arrays of type double with a
size that is equivalent to the
VHDL port size.

TIME Type double for time values | Arrays of type double or int64

in seconds and type int64
for values representing
simulator time increments
(see the description of
the 'time' option in
hdldaemon).

with a size that is equivalent to
the VHDL port size.

Enumerated types

Character array (string)
that contains the MATLAB
representation of a VHDL
label or character literal.
For example, the label high
converts to 'high' and

the character literal 'c'
convertsto '''c'"'"'.

Cell array of strings with each
element equal to a label for
the defined enumerated type.
Each element is the MATLAB
representation of a VHDL
label or character literal. For
example, the vector (one, '2',
three) converts to the column
vector ['one'; '''2''";
"three']. A user-defined

Performing Data Type Conversions

VHDL-to-MATLAB Data Type Conversions (Continued)

VHDL Types...

As Scalar Converts to... | As Array Converts to...

enumerated type that contains
only character literals, and then
converts to a vector or array of
characters as indicated for the
types STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, and
UNSIGNED.

The following table summarizes how the EDA Simulator Link software
converts supported Verilog data types to MATLAB types. The software
supports only scalar data types for Verilog.

Verilog-to-MATLAB Data Type Conversions

Verilog Types...

Converts to...

wire, reg A character or a column vector of
characters that matches the character
literal for the desired logic states
(bits).

integer A 32-element column vector of

characters that matches the character

literal for the desired logic states
(bits).

Array Indexing Differences Between MATLAB and

HDL

In multidimensional arrays, the same underlying OS memory buffer maps to
different elements in MATLAB and the HDL simulator (this mapping only
reflects different ways the different languages offer for naming the elements
of the same array). When you use both the matlabtb and matlabcp functions,
be careful to assign and interpret values consistently in both applications.

7 Advanced Operational Topics

In HDL, a multidimensional array declared as:

type matrix_2x3x4 is array (0 to 1, 4 downto 2) of std_logic_vector(8 downto 5);

has a memory layout as follows:

bit 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

dimo 0 0 0 0 0 0 0 00 0O 1 1 1 1 1 1 1 1 1 1 11
dim2 4 4 4 4 3 3 3 3 2 2 2 2 4 4 4 4 3 3 33 2 2 2 2
dim38 7 6 5 8 7 6 5 8 7 6 5 8 7 6 5 8 7 6 5 8 7 6 5

This same layout corresponds to the following MATLAB 4x3x2 matrix:

bit 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

dim1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
dim2 1 1 1 1 2 2 2 2 3 3 3 3 11 1 1 2 2 2 2 3 3 383 3
dim3 1 1 1 1 11 1 1 11 1 1 2 2 2 2 2 2 2 2 2 2 2 2

Therefore, if H is the HDL array and M is the MATLAB matrix, the following
indexed values are the same:

b1 H(0,4,8) = M(1,1,1)
b2 H(0,4,7) = M(2,1,1)
b3 H(0,4,6) = M(3,1,1)
b4 H(0,4,5) = M(4,1,1)
b5 H(0,3,8) = M(1,2,1)
b6 H(0,3,7) = M(2,2,1)
b19 H(1,3,6) = M(3,2,2)
b20 H(1,3,5) = M(4,2,2)
b21 H(1,2,8) = M(1,3,2)
b22 H(1,2,7) = M(2,3,2)
b23 H(1,2,6) = M(3,3,2)
b24 H(1,2,5) = M(4,3,2)

You can extend this indexing to N-dimensions. In general, the dimensions—if
numbered from left to right—are reversed. The right-most dimension in HDL
corresponds to the left-most dimension in MATLAB.

7-8

Performing Data Type Conversions

Converting Data for Manipulation

Depending on how your simulation MATLAB function uses the data it
receives from the HDL simulator, you may need to code the function to
convert data to a different type before manipulating it. The following table
lists circumstances under which you would require such conversions.

Required Data Conversions

If You Need the
Function fo...

Then...

Compute numeric data
that is received as a type
other than double

Use the double function to convert the
data to type double before performing the
computation. For example:

datas(inc+1) = double(idata);

Convert a standard
logic or bit vector to
an unsigned integer or
positive decimal

Use the mvl2dec function to convert the data to
an unsigned decimal value. For example:

uval = mvl2dec(oport.val)

This example assumes the standard logic or bit
vector is composed of the character literals '1'"
and '0' only. These are the only two values

that can be converted to an integer equivalent.

The mvl2dec function converts the binary data
that the MATLAB function receives from the
entity’s osc_in port to unsigned decimal values
that MATLAB can compute.

See mvl2dec for more information on this
function.

Convert a standard logic
or bit vector to a negative
decimal

Use the following application of the mv12dec
function to convert the data to a signed decimal
value. For example:

suval = mvl2dec(oport.val, true);

7-9

7 Advanced Operational Topics

7-10

Required Data Conversions (Continued)

If You Need the Then...
Function to...

This example assumes the standard logic or bit
vector 1s composed of the character literals '1'
and '0' only. These are the only two values

that can be converted to an integer equivalent.

Examples

The following code excerpt illustrates data type conversion of data passed
in to a callback:

InDelayLine(1) = InputScale * mvl2dec(iport.osc_in',true);

This example tests port values of VHDL type STD LOGIC and
STD_LOGIC_VECTOR by using the all function as follows:

all(oport.val == '1' | oport.val
== IOI)

This example returns True if all elements are '1"' or '0".

Converting Data for Return to the HDL Simulator

If your simulation MATLAB function needs to return data to the HDL
simulator, you may first need to convert the data to a type supported by the
EDA Simulator Link software. The following tables list circumstances under
which such conversions are required for VHDL and Verilog.

Performing Data Type Conversions

Note When data values are returned to the HDL simulator, the char array

size must match the HDL type, including leading zeroes, if needed. For

example:
oport.signal = dec2mvl1(2)

will only work if signal is a 2-bit type in HDL. If the HDL type is anything

else, you must specify the second argument:

oport.signal =

dec2mvl(2, N)

where N is the number of bits in the HDL data type.

VHDL Conversions for the HDL Simulator

To Return Data to an IN
Port of Type...

Then...

STD_LOGIC, STD_ULOGIC, or
BIT

Declare the data as a character that matches the character literal
for the desired logic state. For STD_LOGIC and STD_ULOGIC, the
character can be 'U', 'X', 'O', '1"', 'Z"', 'W', 'L", 'H', or '-"'.
For BIT, the character can be '0' or '1'. For example:

iport.s1 =
iport.bit =

'X'; %STD_LOGIC
'1'; %BIT

STD_LOGIC_VECTOR,
STD_ULOGIC_VECTOR,
BIT _VECTOR, SIGNED, or
UNSIGNED

Declare the data as a column vector or row vector of characters
(as defined above) with one bit per character. For example:

iport.siv = 'X10ZZ'; %STD_LOGIC_VECTOR
iport.bitv = '10100'; %BIT_VECTOR

iport.uns = dec2mv1(10,8); %UNSIGNED, 8 bits

Array of STD_LOGIC_VECTOR
STD_ULOGIC_VECTOR,
BIT_VECTOR, SIGNED, or
UNSIGNED

Declare the data as an array of type character with a size that
is equivalent to the VHDL port size. See “Array Indexing
Differences Between MATLAB and HDL” on page 7-7.

7-11

7 Advanced Operational Topics

7-12

VHDL Conversions for the HDL Simulator (Continued)

To Return Data to an IN
Port of Type...

Then...

INTEGER or NATURAL

Declare the data as an array of type int32 with a size that is
equivalent to the VHDL array size. Alternatively, convert the
data to an array of type int32 with the MATLAB int32 function
before returning it. Be sure to limit the data to values with the
range of the VHDL type. If necessary, check the right and left
fields of the portinfo structure. For example:

iport.int = int32(1:10)"';

REAL Declare the data as an array of type double with a size that is
equivalent to the VHDL port size. For example:
iport.dbl = ones(2,2);
TIME Declare a VHDL TIME value as time in seconds, using type

double, or as an integer of simulator time increments, using type
int64. You can use the two formats interchangeably and what
you specify does not depend on the hdldaemon 'time' option (see
hdldaemon), which applies to IN ports only. Declare an array

of TIME values by using a MATLAB array of identical size and
shape. All elements of a given port are restricted to time in
seconds (type double) or simulator increments (type int64), but
otherwise you can mix the formats. For example:

iport.t1 = int64(1:10)"'; %Simulator time
sincrements
1e-9; %1 nsec

iport.t2

Performing Data Type Conversions

VHDL Conversions for the HDL Simulator (Continued)

To Return Data to an IN
Port of Type...

Then...

Enumerated types

Declare the data as a string for scalar ports or a cell array of
strings for array ports with each element equal to a label for the
defined enumerated type. The 'label’ field of the portinfo
structure lists all valid labels (see “Gaining Access to and
Applying Port Information” on page 7-45). Except for character
literals, labels are not case sensitive. In general, you should
specify character literals completely, including the single quotes,
as in the first example shown here. .

iport.char = {""'A"""', "'"'B'''}; %Character
%sliteral
iport.udef = 'mylabel'; %User-defined label

Character array for standard
logic or bit representation

Use the dec2mvl function to convert the integer. For example:

oport.slva =dec2mvl1([23 99],8)"';

This example converts two integers to a 2-element array of
standard logic vectors consisting of 8 bits.

Verilog Conversions for the HDL Simulator

To Return Data to an
input Port of Type...

Then...

reg, wire Declare the data as a character or a column vector of characters
that matches the character literal for the desired logic state.
For example:
iport.bit = '1';
integer Declare the data as a 32-element column vector of characters (as

defined above) with one bit per character.

7-13

7 Advanced Operational Topics

7-14

Understanding the Representation of Simulation Time

In this section...

“Overview to the Representation of Simulation Time” on page 7-14

“Defining the Simulink and HDL Simulator Timing Relationship” on page
7-15

“Setting the Timing Mode with EDA Simulator Link” on page 7-16
“Relative Timing Mode” on page 7-17

“Absolute Timing Mode” on page 7-23

“Timing Mode Usage Considerations” on page 7-25

“Setting HDL Cosimulation Block Port Sample Times” on page 7-27

Overview to the Representation of Simulation Time

The representation of simulation time differs significantly between the HDL
simulator and Simulink. Each application has its own timing engine and the
link software must synchronize the simulation times between the two.

In the HDL simulator, the unit of simulation time is referred to as a tick.
The duration of a tick is defined by the HDL simulator resolution limit. The
default resolution limit is 1 ns, but may vary depending on the simulator.

¢ ModelSim Users:

To determine the current ModelSim resolution limit, enter echo
$resolution or report simulator state at the ModelSim prompt. You
can override the default resolution limit by specifying the -t option on the
ModelSim command line, or by selecting a different Simulator Resolution
in the ModelSim Simulate dialog box. Available resolutions in ModelSim
are 1x, 10x, or 100x in units of fs, ps, ns, us, ms, or sec. See the ModelSim
documentation for further information.

e Incisive Users:

To determine the current HDL simulator resolution limit, enter echo
$timescale at the HDL simulator prompt. See the HDL simulator
documentation for further information.

Understanding the Representation of Simulation Time

* Discovery Users:

See the HDL simulator documentation for instructions on determining the
current HDL simulator resolution limit

Simulink maintains simulation time as a double-precision value scaled to
seconds. This representation accommodates modeling of both continuous
and discrete systems.

The relationship between Simulink and the HDL simulator timing affects
the following aspects of simulation:

Total simulation time

¢ Input port sample times

Output port sample times

Clock periods

During a simulation run, Simulink communicates the current simulation
time to the HDL simulator at each intermediate step. (An intermediate step
corresponds to a Simulink sample time hit. Upon each intermediate step, new
values are applied at input ports, or output ports are sampled.)

To bring the HDL simulator up-to-date with Simulink during cosimulation,
you must convert sampled Simulink time to HDL simulator time (ticks) and
allow the HDL simulator to run for the computed number of ticks.

Defining the Simulink and HDL Simulator Timing
Relationship

The differences in the representation of simulation time can be reconciled in
one of two ways using the EDA Simulator Link interface:

¢ By defining the timing relationship manually (with Timescales pane)

When you define the relationship manually, you determine how many
femtoseconds, picoseconds, nanoseconds, microseconds, milliseconds,
seconds, or ticks in the HDL simulator represent 1 second in Simulink.

¢ By allowing EDA Simulator Link to define the timescale automatically
(with Auto Timescale on the Timescales pane)

7-15

7 Advanced Operational Topics

7-16

When you allow the link software to define the timing relationship, it
attempts to set the timescale factor between the HDL simulator and
Simulink to be as close as possible to 1 second in the HDL simulator = 1
second in Simulink. If this setting is not possible, the link product attempts
to set the signal rate on the Simulink model port to the lowest possible
number of HDL simulator ticks.

Setting the Timing Mode with EDA Simulator Link

The Timescales pane of the HDL Cosimulation block parameters dialog box
defines a correspondence between one second of Simulink time and some
quantity of HDL simulator time. This quantity of HDL simulator time can be
expressed in one of the following ways:

® In relative terms (i.e., as some number of HDL simulator ticks). In this
case, the cosimulation is said to operate in relative timing mode. The HDL
Cosimulation block defaults to relative timing mode for cosimulation. For
more on relative timing mode, see “Relative Timing Mode” on page 7-17.

® In absolute units (such as milliseconds or nanoseconds). In this case, the
cosimulation is said to operate in absolute timing mode. For more on
absolute timing mode, see “Absolute Timing Mode” on page 7-23.

The Timescales pane lets you choose an optimal timing relationship between
Simulink and the HDL simulator, either by entering the HDL simulator
equivalent or by clicking on Auto Timescale. The next figure shows the
default settings of the Timescales pane (example shown is for use with
Incisive).

Understanding the Representation of Simulation Time

=] Function Block Parameters: HDL Cosimulation B =
Sirnulink and Incisive Cosimulation
Cosimulate hardware components using Incisive(R) simulators. Inputs from Simulink(R) are applied to HOL signals. Qutputs

from this block are driven by HOL signals.

Ports Clocks Timescales Connection] Tcll

Relate Simulink sample times to the HOL simulation time by specifying a scalefactor. & 'tick' is the HOL simulator tirne
resolution. The Sirulink sample tirme rultiplied by the scalefactor must be a whole number of HDL ticks.

Auto Timescale | Automnatically calculates a timescale. Click on the help button for more information.

1 second in Simulink corresponds to |1 [Tice =] in the HDL simulator

= | pr— | ﬂe‘p 5 p— |

For instructions on setting the timing mode either automatically or manually,

see Timescales pane in the HDL Cosimulation block reference.

Relative Timing Mode

Relative timing mode defines the following one-to-one correspondence between

simulation time in Simulink and the HDL simulator:

One second in Simulink corresponds to N ticks in the HDL simulator,
where N is a scale factor.

This correspondence holds regardless of the HDL simulator timing resolution.

The following pseudocode shows how Simulink time units are converted to

HDL simulator ticks:

InTicks = N * tInSecs

7-17

7 Advanced Operational Topics

7-18

where InTicks is the HDL simulator time in ticks, tInSecs is the Simulink
time in seconds, and N is a scale factor.

Operation of Relative Timing Mode

The HDL Cosimulation block defaults to relative timing mode, with a scale
factor of 1. Thus, 1 Simulink second corresponds to 1 tick in the HDL
simulator. In the default case:

e [f the total simulation time in Simulink is specified as N seconds, then
the HDL simulation will run for exactly N ticks (i.e., N ns at the default
resolution limit).

¢ Similarly, if Simulink computes the sample time of an HDL Cosimulation
block input port as Tsi seconds, new values will be deposited on the HDL
input port at exact multiples of T'si ticks. If an output port has an explicitly
specified sample time of T'so seconds, values will be read from the HDL
simulator at multiples of Tso ticks.

Relative Timing Mode Example

To understand how relative timing mode operates, review cosimulation
results from the following example model.

For Use with ModelSim

Inverter kodel

Model5im
JJJ'|I|_|'| uintd -; ufind_End) aut
— Simulator To Wotspace

The model contains an HDL Cosimulation block (labeled VHDL Cosimulation
INVERTER) simulating an 8-bit inverter that is enabled by an explicit clock.
The inverter has a single input and a single output. The following sample
shows VHDL code for the inverter:

Understanding the Representation of Simulation Time

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY inverter IS PORT (

inport : IN std_logic_vector := "11111111";
outport: OUT std_logic_vector := "00000000";
clk:IN std_logic

);

END inverter;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ARCHITECTURE behavioral OF inverter IS
BEGIN
PROCESS (clk)
BEGIN
IF (clk'EVENT AND clk = '1') THEN
outport <= NOT inport;
END IF;
END PROCESS;
END behavioral;

A cosimulation of this model might have the following settings:

® Simulation parameters in Simulink:
= Timescales parameters: default (relative timing with a scale factor of 1)
= Total simulation time: 60 s
= Input port (/inverter/inport) sample time: 24 s
= Output port (/inverter/outport) sample time: 12 s
= Clock (inverter/clk) period: 10 s
® ModelSim resolution limit: 1 ns
The next figure shows the ModelSim wave window after a cosimulation run

of the example Simulink model for 60 ns. The wave window shows that
ModelSim simulated for 60 ticks (60 ns). The inputs change at multiples of 24

7-19

7 Advanced Operational Topics

ns and the outputs are read from ModelSim at multiples of 12 ns. The clock is
driven low and high at intervals of 5 ns.

Ware |- [O] <]

File Edit View Add Format Tools Window

@4 «w B o-HEDHE HPeBE RO || By
N B R I T T

i t |11111101 GRS YR Y] (R
1) 0
B
= | XX EEEEAER R I EEEEELEEERRE
P

Kl I3 2 [T} D]
Onsta 75 ns Mowe: Ons Delta: 0
| |

Now consider a cosimulation of the same model, this time configured with a
scale factor of 100 in the Timescales pane.

The ModelSim wave window in the next figure shows that Simulink port
and clock times were scaled by a factor of 100 during simulation. ModelSim
simulated for 6 microseconds (60 * 100 ns). The inputs change at multiples of
24 * 100 ns and outputs are read from ModelSim at multiples of 12 * 100 ns.
The clock is driven low and high at intervals of 500 ns.

7-20

Understanding the Representation of Simulation Time

Wave !E

File Edit view Add Format Tools Window

O-=0 & RN RE]

e L Y T TR

N R I T '
\ |

e
I B

6000 ns

‘ Onsto 6188 ns | Mow: Ons Delta: 0 Y

For Use with Incisive

0 Scope
| Incisive

~ -
Constant L

(=i "f.: sout —

Simulator
— Convert Manusal Switch HOL Cosimulation

FPulse Data Type Conversion
Generator

h

The model contains an HDL Cosimulation block (labeled HDL_Cosimulation1)
simulating an 8-bit inverter that is enabled by an explicit clock. The inverter
has a single input and a single output. The following code excerpt lists the
Verilog code for the inverter:

module inverter_clock_vl(sin, sout,clk);

input [7:0] sin;
output [7:0] sout;
input clk;

reg [7:0] sout;

7-21

7 Advanced Operational Topics

always @(posedge clk)
sout <= ! (sin);
endmodule

A cosimulation of this model might have the following settings:

® Simulation parameters in Simulink:
= Timescales parameters: 1 Simulink second = 10 HDL simulator ticks
= Total simulation time: 30 s
= Input port (inverter_clock_vl.sin) sample time: N/A
= Output port (inverter_clock_vl.sout) sample time: 1 s
= Clock (inverter_clock_vl.clk) period: 5 s
¢ HDL simulator resolution limit: 1 ns

The previous example was excerpted from the EDA Simulator Link Inverter
tutorial. For more information, see EDA Simulator Link demos.

For Use with Discovery

0 Scope
- Discove
Constant - o
sin - sout —pe

Simulator
—] Convert Manual Switch HOL Cosimulation

Fulse Data Type Conversion
Generator

Y

¥

The model contains an HDL Cosimulation block (labeled HDL_Cosimulation1)
simulating an 8-bit inverter that is enabled by an explicit clock. The inverter
has a single input and a single output. The following code excerpt lists the
Verilog code for the inverter:

module inverter_clock_vl(sin, sout,clk);

input [7:0] sin;
output [7:0] sout;

7-22

Understanding the Representation of Simulation Time

input clk;
reg [7:0] sout;

always @(posedge clk)
sout <= ! (sin);
endmodule

A cosimulation of this model might have the following settings:

® Simulation parameters in Simulink:

= Timescales parameters: 1 Simulink second = 10 HDL simulator ticks

Total simulation time: 30 s

Input port (inverter_clock_vl.sin) sample time: N/A
= QOutput port (inverter_clock_vl.sout) sample time: 1 s
= Clock (inverter_clock_vl.clk) period: 5 s

e HDL simulator resolution limit: 1 ns

Absolute Timing Mode

Absolute timing mode lets you define the timing relationship between
Simulink and the HDL simulator in terms of absolute time units and a scale
factor:

One second in Simulink corresponds to (N * Tu) seconds in the HDL
simulator, where Tu is an absolute time unit (for example, ms, ns, etc.)
and N is a scale factor.

In absolute timing mode, all sample times and clock periods in Simulink are

quantized to HDL simulator ticks. The following pseudocode illustrates the
conversion:

tInTicks = tInSecs * (tScale / tRL)
where:

e tInTicks is the HDL simulator time in ticks.

e tInSecs is the Simulink time in seconds.

7-23

7 Advanced Operational Topics

7-24

e tScale is the timescale setting (unit and scale factor) chosen in the
Timescales pane of the HDL Cosimulation block.

® tRL is the HDL simulator resolution limit.
For example, given a Timescales pane setting of 1 s and an HDL simulator

resolution limit of 1 ns, an output port sample time of 12 ns would be
converted to ticks as follows:

tInTicks = 12ns * (1s / 1ns) = 12

Operation of Absolute Timing Mode

To configure the Timescales parameters for absolute timing mode, you select
a unit of absolute time that corresponds to a Simulink second, rather than
selectingTick.

Absolute Timing Mode Example
To understand the operation of absolute timing mode, you will again consider

the example model discussed in “Operation of Relative Timing Mode” on page
7-18. Suppose that the model is reconfigured as follows:

® Simulation parameters in Simulink:

= Timescale parameters: 1 s of Simulink time corresponds to 1 s of
HDL simulator time.

= Total simulation time: 60e-9 s (60ns)

= Input port (/inverter/inport) sample time: 24e-9 s (24 ns)

= Output port (/inverter/outport) sample time: 12e-9 s (12 ns)

= Clock (inverter/clk) period: 10e-9 s (10 ns)
® HDL simulator resolution limit: 1 ns
Given these simulation parameters, the Simulink software will cosimulate
with the HDL simulator for 60 ns, during which Simulink will sample inputs

at a intervals of 24 ns, update outputs at intervals of 12 ns, and drive clocks
at intervals of 10 ns.

Understanding the Representation of Simulation Time

The following figure shows a ModelSim wave window after a cosimulation
run.

=

File Edit View Add Format Tools Window

SR ;m,=wsmﬂaj TEIEEES
323N oai B> AR [T 1/
|

11111101
0

-
ae S S 5ns
s S Cursor 4 I

o] [
| 0ns to 75 ns | Now: 0ns Delta: 0

Timing Mode Usage Considerations

When setting a timescale mode, you may need to choose your setting based on
the following considerations.

¢ “Timing Mode Usage Restrictions” on page 7-25

e “Non-Integer Time Periods” on page 7-26

Timing Mode Usage Restrictions

The following restrictions apply to the use of absolute and relative timing
modes:

¢ When multiple HDL Cosimulation blocks in a model are communicating
with a single instance of the HDL simulator, all HDL Cosimulation blocks
must have the same Timescales pane settings.

7-25

7 Advanced Operational Topics

7-26

¢ Ifyou change the Timescales pane settings in an HDL Cosimulation block
between consecutive cosimulation runs, you must restart the simulation in
the HDL simulator.

¢ If you specify a Simulink sample time that cannot be expressed as a whole
number of HDL ticks, you will get an error.

Non-Integer Time Periods

When using non-integer time periods, the HDL simulator cannot represent
such an infinitely repeating value. So the simulator truncates the time period,
but it does so differently than how Simulink truncates the value, and the
two time periods no longer match up.

The following example demonstrates how to set the timing relationship in the

in Simulink,

following scenario: you want to use a sample period of
which corresponds to a non-integer time period. z

The key 1dea here is that you must always be able to relate a Simulink time
with an HDL tick. The HDL tick is the finest time slice the HDL simulator
recognizes; for ModelSim, the default tick is 1 ns, but it can be made as
precise as 1 fs.

However, a 3 Hz signal actually has a period of 333.33333333333... ms, which
1s not a valid tick period for the HDL simulator. The HDL simulator will
truncate such numbers. But Simulink does not make the same decision; thus,
for cosimulation where you are trying to keep two independent simulators in
synchronization, you should not assume anything. Instead you have to decide
whether it is convenient to truncate or round the number.

Therefore, the solution is to "snap" either the Simulink sample time or the
HDL sample time (via the timescale) to valid numbers. There are infinite
possibilities, but here are some possible ways to perform a snap:

¢ Change Simulink sample times from 1/3 sec to 0.33333 sec and set the
cosimulation block timescale to ’1 second in Simulink = 1 second in the
HDL simulator’. If you are specifying a clock in the HDL Cosimulation
block Clocks pane, its period should be 0.33333 sec.

Understanding the Representation of Simulation Time

e Keep Simulink sample times at 1/3 sec. and 1 second in Simulink = 6
ticks in the HDL simulator. If you are specifying a clock in the HDL
Cosimulation block Clocks pane, its period should be 1/3. Briefly, this
specification tells Simulink to make each Simulink sample time correspond
to every (1/3*6) = 2 ticks, regardless of the HDL time resolution. If your
default HDL simulator resolution is 1 ns, that means your HDL sample
times are every 2 ns. This sample time will work in a way so that for
every Simulink sample time there is a corresponding HDL sample time;
however, Simulink thinks in terms of 1/3 sec periods and the HDL in terms
of 2 ns periods. Thus, you could get confused during debug. If you want
this to match the real period (such as to 5 places, 1.e. 333.33ms), you can
follow the next option listed.

e Keep Simulink sample times at 1/3 sec and 1 second in Simulink =
0.99999¢9 ticks in the HDL simulator. If you are specifying a clock in the
HDL Cosimulation block Clocks pane, its period should be 1/3.

Setting HDL Cosimulation Block Port Sample Times

In general, Simulink handles the sample time for the ports of an HDL
Cosimulation block as follows:

e If an input port is connected to a signal that has an explicit sample time,
based on forward propagation, Simulink applies that rate to that input port.

e If an input port is connected to a signal that does not have an explicit sample
time, Simulink assigns a sample time that is equal to the least common
multiple (LCM) of all identified input port sample times for the model.

e After Simulink sets the input port sample periods, it applies user-specified
output sample times to all output ports. Sample times must be explicitly
defined for all output ports.

If you are developing a model for cosimulation in relative timing mode,
consider the following sample time guideline:

Specify the output sample time for an HDL Cosimulation block as an
integer multiple of the resolution limit defined in the HDL simulator.
Use the HDL simulator command report simulator state (ModelSim
and Incisive users) or senv timePrecision (Discovery users) to check
the resolution limit of the loaded model. If the HDL simulator resolution

7-27

7 Advanced Operational Topics

limit 1s 1 ns and you specify a block’s output sample time as 20, Simulink
interacts with the HDL simulator every 20 ns.

7-28

Driving Clocks, Resets, and Enables

Driving Clocks, Resets, and Enables

In this section...

“Options for Driving Clocks, Resets, and Enables” on page 7-29
“Adding Signals Using Simulink Blocks” on page 7-29

“Creating Optional Clocks with the Clocks Pane of the HDL Cosimulation
Block” on page 7-30

“Driving Signals by Adding Force commands” on page 7-33

Options for Driving Clocks, Resets, and Enables

You can create rising-edge or falling-edge clocks, resets, or clock enable
signals that apply internal stimuli to your model under cosimulation. You can
add these signals in the following ways:

¢ By “Adding Signals Using Simulink Blocks” on page 7-29

¢ By “Creating Optional Clocks with the Clocks Pane of the HDL
Cosimulation Block” on page 7-30 (ModelSim and Incisive only)

¢ By “Driving Signals by Adding Force commands” on page 7-33

¢ By implementing these signals directly in HDL code. If your model is part
of a much larger HDL design, you (or the larger model designer) may
choose to implement these signals in the Verilog or VHDL files. However,
that implementation exceeds the scope of this documentation; see an HDL
reference for more information.

Adding Signals Using Simulink Blocks

Add rising-edge or falling-edge clocks, resets, or clock enable signals to your
Simulink model using Simulink blocks. See the Simulink User Guide and
Reference for instructions on adding Simulink blocks to a Simulink model.

In the following example excerpt, the shaded area shows a clock, a reset, and
a clock enable signal as input to a multiple HDL Cosimulation block model.
These signals are created using two Simulink data type conversion blocks and
a constant source block, which connect to the HDL Cosimulation block labeled
"Manchester Receiver Subsystem".

7-29

7 Advanced Operational Topics

P boolean

Vo
L
+H +H+ +H
Pulse [kata Type Conversion
Generator
Constant
+HH HH
[V I
i1 i boolean
+H +H+ +H
Pulse Leta Type Comversiont
| .
Generator Ll
" dats ——Jw
ol f——P
Input Dats —
[TN =
. Fhase Offsat u"t__éF:bH dvalid
Encoded —
e r=zzt Syme_ »
Manchester Encoder
sum_i f——f-
| samp
qeum_i ——f-

Manchester Receiver Subsystem

Creating Optional Clocks with the Clocks Pane of the
HDL Cosimulation Block

Note For ModelSim and Incisive Users Only

When you specify a clock in your block definition, Simulink creates a
rising-edge or falling-edge clock that drives the specified HDL signal.

Simulink attempts to create a clock that has a 50% duty cycle and a predefined
phase that is inverted for the falling edge case. If necessary, Simulink
degrades the duty cycle to accommodate odd Simulink sample times, with a
worst case duty cycle of 66% for a sample time of T=3.

7-30

Driving Clocks, Resets, and Enables

Whether you have configured the Timescales pane for relative timing mode
or absolute timing mode, the following restrictions apply to clock periods:

¢ If you specify an explicit clock period, you must enter a sample time equal
to or greater than 2 resolution units (ticks).

e If the clock period (whether explicitly specified or defaulted) is not an even
integer, Simulink cannot create a 50% duty cycle, and therefore the EDA
Simulator Link software creates the falling edge at

clockperiod / 2

(rounded down to the nearest integer).

For more information on calculating relative and absolute timing modes,
see “Defining the Simulink and HDL Simulator Timing Relationship” on
page 7-15.

The following figure shows a timing diagram that includes rising and falling
edge clocks with a Simulink sample time of T=10 and an HDL simulator
resolution limit of 1 ns. The figure also shows that given those timing
parameters, the clock duty cycle is 50%.

Rising Edge Clock

i < 50% Duty Cycle —p|
i ;
I «—— Simulink Sample Period, T=10 —— !

| I IS IR [NN N N A
UL L L L

 HDL Simulator Resolution Limit

Fclling Edge Clock

To create clocks, perform the following steps:

1 In the HDL simulator, determine the clock signal path names you plan to
define in your block. To do so, you can use the same method explained for

7-31

7 Advanced Operational Topics

determining the signal path names for ports in step 1 of “Mapping HDL
Signals to Block Ports” on page 3-19.

2 Select the Clocks tab of the Block Parameters dialog box. Simulink
displays the dialog box as shown in the next figure (example shown for
use with Incisive).

m Function Block Parameters: HDL Cosimulation - O X

i~ Simulink and Incisive G

Cosimulate hardware components using Incisive (R simulators. Inputs from Simulink(A) are appled ta HOL signaks. Outputs from this black are driven by
HDL signaks.

[Pois | Qlacks | Timescaks | Connection | Tl |

You can genemate your HOL clocks in this tab. The edge specifies the active edge in your HDL design. In oder to avoid race conditions between the
genemted clock and the input and oulput signals, the fist active edge will be placed at time Perod/2. Other options to genemte chocks, mssts, and enabks
include:

® Use Simulink blocks and add the signals to the Ports tab.

® Create waveforme using HOL simulator Tel commands in the Tel tab.

®Code them in HOL.

Full HDL Rame Active Pericd
Cleck Edge
[ok ” Cancs| ” Help ” Apply

3 Click New to add a new clock signal.

4 Edit the clock signal path name directly in the table under the Full HDL
Name column by double-clicking the default clock signal name (/top/clk).
Then, specify your new clock using HDL simulator path name syntax. See
“Specifying HDL Signal/Port and Module Paths for Cosimulation” on page
3-20.

The HDL simulator does not support vectored signals in the Clocks pane.
Signals must be logic types with 1 and 0 values.

5 To specify whether the clock generates a rising-edge or falling edge signal,
select Rising or Falling from the Active Clock Edge list.

7-32

Driving Clocks, Resets, and Enables

6 The Period field specifies the clock period. Accept the default (2), or
override it by entering the desired clock period explicitly by double-clicking
in the Period field.

Specify the Period field as an even integer, with a minimum value of 2.

7 When you have finished editing clock signals, click Apply to register your
changes with Simulink.

The following dialog box defines the rising-edge clock clk for the HDL
Cosimulation block, with a default period of 2 (example shown for use with

ModelSim).

=] Function Block Parameters: HDL Cosimulation

Cosimulate hardware components with MadelSim(R) simulators. [nputs from Simulink(R] are applied to HDL signals. Outputs fram thiz block are driven by

Simulink and MadelSim Cosimulation
’7 HOL signals.

Puorts Clocks

Timescales Connection I TcII

‘f'ou can generate your HOL clocks in this tab. The edge specifies the active edge in vour HOL design. In arder to avoid race conditions between the
generated clock and the input and output signalz, the first active edge will be placed at time Period/2. Other options to generate clocks, resets, and

enables include:
® Jze Simulink blocks and add the signals to the Ports tab.

® Create waveforms using HDL simulatar Tel commands in the Tel tab.
® Cods them in HOL.

Full HDL Hame Active Period
Clock Edge
New clk Rising LI 2
Delete
Up
D
ok Cancel | Help | Apply

Driving Signals by Adding Force commands

You can drive clocks, resets, and enable signals in either of two ways:.

¢ By adding force commands to the Tel pane (ModelSim and Incisive users
only)

7-33

7 Advanced Operational Topics

¢ By driving signals with one of the EDA Simulator Link HDL simulator
launch commands (vsim, nclaunch, or launchDiscovery) and the force
command

Examples: force Command entered in HDL Cosimulation block
Tcl Pane

The following is an example of entering force commands in the Tcl pane of
the HDL Cosimulation block for use with Incisive:

Function Block Parameters: HDL Cosimulation

Simulink and Incisive Cosimulation

Cosimulate hardware components using Incisive(R) simulators. Inputs from Simulink(R) are applied to HDL signals. Qutputs
from this block are driven by HDL signals.

Ports Clocks Timescales Connection Tel

Pre-simulation commands:

force figconvfclk 1 0, 0 5 ns -repeat 10 ns
force figconv/clk_enable 1
force fiqconv/reset 1

Post-simulation commands:

puts "done"

ok | — | ﬂe|p | pr |

The following is an example of entering force commands in the Tcl pane of the
HDL Cosimulation block for use with ModelSim:

7-34

Driving Clocks, Resets, and Enables

E! Function Block Parameters: HDL Cosimulation x|

’rsimulnk and ModelSim Cosimulation

Cosimulate hardware components with ModelSim{R) simulators. Inputs from Simulink(R) are applied to HOL signals. Outputs from this block are driven
by HOL signals.

Ports | Clocks Timescales Connection Td

Pre-simulation commands:

@force osc_top.dk_enable 1 -after Ons
@force osc_top.reset 0 -after Ons 1 -after 40ns 0 -after 120ns
@force osc_top.dk 1 -after Ons 0 -after 40ns -repeat 80ns

Post-simulation commands:

puts "done”™

oK | Cancel | Help | Apply |

Examples: force Command used with EDA Simulator Link HDL
Simulator Launch Command
vsim function and force command (ModelSim users):

vsim('tclstart', {'force /iqconv/clk 1 0, O 5 ns -repeat 10 ns ',
'force /iqconv/clk_enable 1', 'force /iqconv/reset 1'});

nclaunch function and force command (Incisive users):
nclaunch('tclstart',['-input "{@force osc_top.clk_enable 1 -after Ons}"',

'-input "{@force osc_top.reset 0 -after Ons 1 -after 40ns 0 -after 120ns}"’',

'-input "{@force osc_top.clk 1 -after Ons 0 -after 40ns -repeat 80ns}"']);

launchDiscovery function and force command (Discovery users) — note code
in bold:

7-35

7 Advanced Operational Topics

7-36

pv = launchDiscovery(

'LinkType', 'Simulink’,
'VerilogFiles', vlogFiles,
'TopLevel', 'manchester',
'RunMode ', runMode,
'V1ogAnFlags', '+v2k',
'PreSimTcl’,

{ force manchester.clk 1 0, 0 5 -repeat 10 ,
force manchester.clk_enable 1 0 ,
force manchester.reset 1 0, 0 1000 1},

'AccFile', fullfile(demoBase, 'manchester.pli_acc.tab')

Eliminating Block Simulation Latency

Eliminating Block Simulation Latency

Applying Direct Feedthrough to Eliminate Block
Simulation Latency

The EDA Simulator Link direct feedthrough feature eliminates latency in
HDL designs with pure combinational datapaths. Direct feedthrough means
that the output is controlled directly by the value of an input port. With direct
feedthrough enabled, the input value change propagates to the output ports
in zero time, thus eliminating the one output-sample delay.

You will still experience block simulation latency for pure combinational
circuits even with direct feedthrough applied if your HDL design contains any
of the following conditions:

¢ A different sample time between the input and output ports

¢ A nonuniform sampling time among the output ports

¢ The input/output signals are framed

When you are simulating a sequential circuit that has a register on the

datapath from input port to output port, specifying direct feedthrough does
not affect the timing of that datapath.

Discovery Users You may not enable direct feedthrough if your design
contains mixed HDL (VHDL and Verilog). If you do, EDA Simulator Link will
display an error in the HDL simulator.

Read the following sections to learn more about using direct feedthrough:

* “How to Apply Direct Feedthrough” on page 7-38
e “Example of Applying Direct Feedthrough” on page 7-39

You can also examine the demo “Simulate HDL Design with Pure
Combinational Datapath” to see how you might apply this feature.

7-37

7 Advanced Operational Topics

How to Apply Direct Feedthrough
To apply direct feedthrough:

1 Double-click on the HDL Cosimulation block.
2 Click on the Ports pane.

3 Select Enable direct feedthrough for HDL design with pure
combinational datapath.

=] Function Block Parameters: HDL Cosimulation

Simulink and ModelSim Cosimulation

Cosimulate hardware components with ModelSim(R) simulators. Inputs from Simulink(R) are applied to HOL signals. Outputs from this block are driven
by HDL signals.

Ports | Clocks I Timescales Connection I Td I

[v Enable direct feedthrough for HOL design with pure combinational datapath

Auto Fill | Use the ‘Auto Fill' button to automatically create the signal interface from a specified HDL component instance.
Full HOL Mame I/0 Mode
MNew
/gainx2/sin Rl | Trherio|Inheric || Inheric
Delete | fgeinz/sout cutput = 1|inherit =] Inheric
Up |
Down

0K Cancel Help Apply

4 Click Apply.

7-38

Eliminating Block Simulation Latency

Example of Applying Direct Feedthrough

In the Simulink model, the HDL cosimulation block has a path from input to
output that contains only pure combinational logic.

HOL Cosimulation
Black

input ut put
- oups [T

Scope

Without direct feedthrough applied, the HDL output has a one-sample delay
compared with the Simulink reference signal, as shown in the following Scope
window.

7-39

7 Advanced Operational Topics

) Scope

- scope
SE ppp HBE BALE

Input alues

SIMULIMNE, Output

HOL Output

This delay occurs from simulating a pure combinational HDL design without
applying direct feedthrough.

With direct feedthrough applied, the change of input signal is propagated to

the output port in zero time as expected, as shown in the following Scope
window.

7-40

Eliminating Block Simulation Latency

SE| LpLL ABEB BAE

Input Yalues

SIMULIMNE Dutput

HOL Output

7-41

7 Advanced Operational Topics

7-42

Defining EDA Simulator Link MATLAB Functions and
Function Parameters

In this section...

“MATLAB Function Syntax and Function Argument Definitions” on page
7-42

“Oscfilter Function Example” on page 7-44

“Gaining Access to and Applying Port Information” on page 7-45

MATLAB Function Syntax and Function Argument
Definitions
The syntax of a MATLAB component function is

function [oport, tnext] = MyFunctionName(iport, tnow, portinfo)

The syntax of a MATLAB test bench function is

function [iport, tnext] = MyFunctionName (oport, tnow, portinfo)

The input/output arguments (iport and oport) for a MATLAB component
function are the reverse of the port arguments for a MATLAB test bench
function. That is, the MATLAB component function returns signal data to the
outputs and receives data from the inputs of the associated HDL module.

For more information on using tnext and tnow for simulation scheduling, see
“Scheduling Component Functions Using the tnext Parameter” on page 2-26.

The following table describes each of the test bench and component function
parameters and the roles they play in each of the functions.

Defining EDA Simulator Link™ MATLAB Functions and Function Parameters

Parameter Test Bench Component

iport Output Input
Structure that forces (by Structure that receives signal
deposit) values onto signals values from the input ports
connected to input ports of the | defined for the associated HDL
associated HDL module. module at the time specified

by tnow.

tnext Output, optional Output, optional
Specifies the time at which Same as test bench.
the HDL simulator schedules
the next callback to MATLAB.
tnext should be initialized
to an empty value ([]). If
tnext is not later updated, no
new entries are added to the
simulation schedule.

oport Input Output
Structure that receives signal | Structure that forces (by
values from the output ports deposit) values onto signals
defined for the associated HDL | connected to output ports of
module at the time specified the associated HDL module.
by tnow.

tnow Input Same as test bench.
Receives the simulation
time at which the MATLAB
function is called. By default,
time is represented in seconds.
For more information see
“Scheduling Component
Functions Using the tnext
Parameter” on page 2-26.

portinfo Input Same as test bench.

For the first call to the
function only (at the start of
the simulation) , portinfo
receives a structure whose
fields describe the ports

7-43

7 Advanced Operational Topics

7-44

Parameter

Test Bench Component

defined for the associated HDL
module. For each port, the
portinfo structure passes
information such as the port’s
type, direction, and size.

If you are using matlabcp, initialize the function outputs to empty values at
the beginning of the function as in the following example:

tnext = [];
oport = struct();

Note When you import VHDL signals, signal names in iport, oport, and
portinfo are returned in all capitals.

You can use the port information to create a generic MATLAB function that
operates differently depending on the port information supplied at startup.
For more information on port data, see “Gaining Access to and Applying Port
Information” on page 7-45.

Oscfilter Function Example

The following code gives the definition of the oscfilter MATLAB component
function.

function [oport,tnext] = oscfilter(iport, tnow, portinfo)

The function name oscfilter, differs from the entity name u_osc_filter.
Therefore, the component function name must be passed in explicitly to the
matlabcp command that connects the function to the associated HDL instance
using the -mfunc parameter.

The function definition specifies all required input and output parameters, as
listed here:

Defining EDA Simulator Link™ MATLAB Functions and Function Parameters

oport Forces (by deposit) values onto the signals connected to the
entity’s output ports, filter1x out, filter4x out and
filter8x_out.

tnext Specifies a time value that indicates when the HDL simulator
will execute the next callback to the MATLAB function.

iport Receives HDL signal values from the entity’s input port,
osc_in.
tnow Receives the current simulation time.

portinfo For the first call to the function, receives a structure that
describes the ports defined for the entity.

The following figure shows the relationship between the HDL entity’s ports
and the MATLAB function’s iport and oport parameters (example shown
is for use with ModelSim).

Input Signals Output Signals

- oport.filtler1x_out
iport.osc_in ———t osc_filter.vhd L5 oport.filterdx_out

— oport.filter8x_out

Gaining Access to and Applying Port Information

EDA Simulator Link software passes information about the entity or module
under test in the portinfo structure. The portinfo structure is passed as
the third argument to the function. It is passed only in the first call to your
MATLAB function. You can use the information passed in the portinfo
structure to validate the entity or module under simulation. Three fields
supply the information, as indicated in the next sample. . The content of
these fields depends on the type of ports defined for the VHDL entity or
Verilog module.

portinfo.field7.field2.field3

The following table lists possible values for each field and identifies the port
types for which the values apply.

7-45

7 Advanced Operational Topics

HDL Port Information

Field... | Can Contain... | Which... And Applies to...
fieldt in Indicates the port is an input All port types
port
out Indicates the port is an output | All port types
port
inout Indicates the port is a All port types
bidirectional port
tscale Indicates the simulator All types
resolution limit in seconds as
specified in the HDL simulator
field2 portname Is the name of the port All port types
field3 type Identifies the port type All port types
For VHDL: integer, real,
time, or enum
For Verilog:
'verilog_logic' identifies
port types reg, wire, integer
right (VHDL The VHDL RIGHT attribute VHDL integer, natural, or
only) positive port types
left (VHDL The VHDL LEFT attribute VHDL integer, natural, or
only) positive port types
size VHDL: The size of the matrix All port types
containing the data
Verilog: The size of the bit
vector containing the data
label VHDL: A character literal or VHDL: Enumerated types,
label including predefined
—_— . . . types BIT, STD_LOGIC,
Verilog: the string '01ZX STD_ULOGIC, BIT VECTOR,
and STD_LOGIC_VECTOR
Verilog: All port types

Defining EDA Simulator Link™ MATLAB Functions and Function Parameters

The first call to the MATLAB function has three arguments including the
portinfo structure. Checking the number of arguments is one way that you
can ensure that portinfo was passed. For example:

if(nargin ==3)

tscale = portinfo.tscale;
end

7-47

7 Advanced Operational Topics

7-48

Exporting Simulink Algorithms
to SystemC TLM 2.0
Components

¢ Chapter 8, “Overview to TLM Component Generation”
¢ Chapter 9, “Selecting Features for the Generated TLM Component”

® Chapter 10, “Creating and Applying a Test Bench for the Generated
TLM Component”

¢ Chapter 11, “Using TLM Components in a SystemC Environment”
¢ Chapter 12, “Configuration Parameters for TLM Generator Target”

Overview to TLM
Component Generation

e “How TLM Component Generation Works” on page 8-2

o “Setting TLM Component Generation Configuration Parameters” on page
8-7

e “User Workflow for TLM Component Generation” on page 8-8

8 Overview to TLM Component Generation

How TLM Component Generation Works

In this section...

“TLM Component Generation” on page 8-2

“How EDA Simulator Link Software Generates a TLM Component” on
page 8-3

TLM Component Generation

The algorithm you use to generate the TLM component can be made of any
combination of Simulink blocks that can generate C code. These blocks
generally belong to a subsystem. Real-Time Workshop® software generates
ANSI C code from those blocks that EDA Simulator Link software then
customizes with the settings specified using the TLM component generator to
create the files that make up the virtual platform model. For an example of
how this process works, see the following illustration.

After you obtain the TLM component files generated by EDA Simulator Link
software, you can compile the TLM component and the optional test bench

How TLM Component Generation Works

with OSCI SystemC 2.2. libraries and the OSCI TLM 2.0 libraries. To do
so, use the makefile supplied by EDA Simulator Link to create your virtual
platform executable (e.g., mysimulation.exe).

The following diagram illustrates the complete set of articles you can generate
including the TLM component, the TLM component test bench, and the set of
test vectors to be executed by the test bench. Simulink generates these vectors
while performing model execution when you verify the TLM component from
within Simulink (see “Verify TLM Component” on page 10-7).

51 simple_modelref
Fle Edt wew Smuabon Format Tooks Help

i =) = »

e

Pul
T

Isa CO|
(Ts=0.1)
— Counterh

codegen RTW TLM2 Target

v ‘

sl

uild and package

nput data and

expected output
doia Stand-Alene Genatic TLM2.0

Testbench Environment

test
initiator

peripheral
comp

and
data |
checker

v

How EDA Simulator Link Software Generates a TLM
Component

EDA Simulator Link software enables the export of a Simulink algorithm so
that you can incorporate that algorithm into a virtual platform model using
execution interface standards (SystemC TLM 2.0).

8-3

8 Overview to TLM Component Generation

The following general workflow describes the process for creating an
OCSI-compatible TLM component representing the Simulink algorithm:

1 Create Simulink model representing algorithm.

2 Select required architectural model (i.e., virtual platform model)
parameters via the Simulink Configuration Parameters dialog box. See
“Setting TLM Component Generation Configuration Parameters” on page
8-17.

3 (Optional) If you want, restore any necessary configuration sets at this
time. Because the topic of configuration sets is outside the scope of this
documentation, refer to “Managing Configuration Sets” in the Simulink
User’s Guide for more information.

4 Initiate code generation.

5 Save configuration options with model for future use.

8-4

How TLM Component Generation Works

Inputs

Save |
Load

TLM Component Generator

Outputs

EDA Simulator Link software generates the following files:

e C/C++ code containing the Simulink model behavior (.cpp and .h files)

8-5

8 Overview to TLM Component Generation

8-6

e Virtual platform TLM component class (.cpp and .h files)
¢ TLM component documentation (HTML)
e TLM component test bench (if specified) (.cpp and .h files)

® Test bench stimulus and expected response vectors (MATLAB formatted
data)

* Makefiles for building the TLM component and standalone test bench
(makefile format)

After code generation is complete, you can then use these generated files
(outputs) to create the standalone TLM executable. See Chapter 11, “Using
TLM Components in a SystemC Environment”.

Setting TLM Component Generation Configuration Parameters

Setting TLM Component Generation Configuration

Parameters

EDA Simulator Link software contains three separate panes for TLM
component generation configuration parameters:

¢ TLM Generation

Select features you want for the generated TLM component. See Chapter 9,
“Selecting Features for the Generated TLM Component”.

e TLM Testbench

Select options for attributes you want the associated test bench to contain.
See Chapter 10, “Creating and Applying a Test Bench for the Generated
TLM Component”.

e TLM Compilation

Specify compilation parameters for the generated makefile. See Chapter
11, “Using TLM Components in a SystemC Environment”.

These panes appear in the Configuration Parameters dialog box after
you select the TLM generation target from the Real-Time Workshop
configuration options pane.

Context-sensitive help is available for every option on each pane of the
Configuration Parameters dialog box. You can view the entire CSH contents
in Chapter 12, “Configuration Parameters for TLM Generator Target”.

See “User Workflow for TLM Component Generation” on page 8-8 for details
regarding setting the options in each of these panes.

8 Overview to TLM Component Generation

8-8

User Workflow for TLM Component Generation

In this section...

“Basic Workflow Steps” on page 8-8

“Select System Target File to Activate TLM Component Generation
Options” on page 8-10

“Select Features for Generated TLM Component” on page 8-11
“Select Options for Associated Test Bench” on page 8-13
“Specify Attributes for Generated makefile” on page 8-15
“Generate TLM Component” on page 8-16

“Verify the Generated TLM Component” on page 8-17

Basic Workflow Steps

The following workflow shows the steps necessary to generate a TLM
component using EDA Simulator Link software:

User Workflow for TLM Component Generation

Select TUM generator
SYSIEM TAFEEL 10 Bctivate
TLM generation options

E

Select features for
generated TUM component

Specify options for
associated testhenth

D you want an
associated
testhench?

Specify antribunes for
generaied makefile

l

Generate TLM component
[and testbench, if specified)

Werity TLM com ponent

Use generated TLM
component inSystemd
ervironment

1 Develop algorithm in Simulink.

8 Overview to TLM Component Generation

8-10

2 “Select System Target File to Activate TLM Component Generation
Options” on page 8-10.

3 “Select Features for Generated TLM Component” on page 8-11.

4 (Optional) “Select Options for Associated Test Bench” on page 8-13.
5 “Specify Attributes for Generated makefile” on page 8-15.

6 Press OK.

7 “Generate TLM Component” on page 8-16.

8 (Optional) “Verify the Generated TLM Component” on page 8-17.

9 Use generated TLM component in SystemC environment.

Select System Target File to Activate TLM Component
Generation Options

1 Select Configuration Parameters from the model window in Simulink.
2 Select the Real-Time Workshop pane.

3 Select Browse on System Target File. Then, select tlmgenerator.tlc,
as shown in the following diagram.

User Workflow for TLM Component Generation

#; Configuration Parameters: untitled [Configuration (

X
Select: Target selection =
- Solver
System target file: |grt.tic Browse... |

~-Data Import/Export ¥ g Ig
- Optimization Language: Ic LI
[I-Diagnostics

-~ Sample Time -

-~Data Validity] System Target File Browser: untitled |

" Type Conversion System Target File: Description:

- Connectivity

-~ Compatibility multilink_ert.tle Embedded IDE Link (for use with Green Hills(R) 1

--Model Referendng multilink_grt.tle Embedded IDE Link (for use with Green Hills(R) I

- Saving rsim_tle

Repid Simulztion Target
--Hardware Implementation | rewin_tle

-~ Model Referencing
[=-Simulation Target

Real-Time Windows Target

rtwinert_tle Real-Time Windows Target [(ERT]

rtwsfen.tle

ction Target
“Symbols tlmgenerator.tle emC TLM Component Generator
i Custom Code tornado.tle Tornade {VaWorks) Real-Time Target
[7)-RealTime Workshop vdsplink_ert_tlc Embedded IDZ Link (for use with Znaleg Devices [
Report vdsplink_grs.tlc Embedded IDE Link (for use with Analog Devices |
~~Comments - ; 1 c T = =
xpotarget.tle x arge
Symbals i Check model ... |
Custom Cade
~~Debug Full Name: V:\jobarchivelaleaf\2009_11_02_h12m17527_job14812_passimatiab\toolbox\sharedy Build |
I”t:’face Template Makefile: ert_default_tmf T
[=-HDL Coder
. Make Command: make_rtw
Global Settings | |
--Test Bench J ﬂ

EDA Tool Scripts

=]
Ok I Cancel | Help | Apply |

4 Click OK to see the new TLM component generation options under
Real-Time Workshop:

e TLM Generation
e TLM Testbench
e TLM Compilation

Select Features for Generated TLM Component
Select options for the following component attributes:

e TLM Memory Mapping: “No Memory Map” on page 9-4, “Automatically
Generated Memory Map with Single Address” on page 9-5, and

“Automatically Generated Memory Map with Individual Addresses” on
page 9-5

8-11

8 Overview to TLM Component Generation

e TLM Component Processing: “Interrupt” on page 9-14, “Test and Set
Register” on page 9-15, “Buffering” on page 9-17, and “The Quantum” on

page 9-16

e “TLM Component Timing Values” on page 9-18

e “TLM Component Naming and Packaging” on page 9-19

Each of these feature groups appear on the TLM Generation pane, as shown
in the following figure:

‘onfiguration Pa

Sel

+-Solver
+Data Import/Export
- Optimization
[=-Diagnostics
-Sample Time
iData Validity
~Type Conversion
i Connectivity
- Compatibility
i-Model Referencing
F-Saving
Hardware Implementation
~Model Referencing
Simulation Target
{--gymbaols
Custom Code
EJ-Real Time Workshop
Report
i Comments
Symbols
-Custom Code
-Debug
‘Interface
~TLM Generation
“TLM Testbench
+TLM Compilation

‘).

eters: timgdemo_intro/Configuration (Active)
—TLM Memory Mapping
Memary Map Type
* No memory map
" Auto-generated memary map
—TLM Component Processing
¥ Create an interrupt request port on the generated TLM component
[¥ Enable payload buffering
Payload input buffer depth: | 5
Payload output buffer depth: I 5
¥ Enable guantum for loosely-timed simulation
Quantum for loosely-timed components {ns): I 1000
—TLM Timing
Algorithm step function {ns): I 100
Single write transfer or the first write transfer in a burst transaction (ns): I 10
Subsequent write transfers in a burst transaction (ns): | 10
Single read transaction or the first read transfer in a burst transaction (in ns): I 10
Subsequent read transfers in a burst transaction (ns): I 10
—TLM Component Naming
User-defined tag for TLM component names: Ilmm
,TI Cancel | Help | Apply

[» [x

If you choose Auto-generated memory map, the options expand to include
the Auto-Generated Memory Map Type section, as shown in the following

figure:

8-12

User Workflow for TLM Component Generation

Configuration P: ers: timgdemo_intro/Configuration (Active) ﬂ
Sele —TLM Memary Mapping el
-~ Solver —Memory Map Type
+Data Import/Export
- Optimization £~ No memory map
[=-Diagnostics &
: g
Sample Time Auto-generated memory map
Data Validity
Type Conversion —Auto-Generated Memory Map Type
Connectlv.'\.ty & Single input and output address offsets
Compatibility
i-Model Referencing " Individual input and output address offsets
FSaving
Hardware Implementation ¥ Indude a command and status register in the memory map
~Model Referencing
E-Simulation Target ™ Indude & test and set register in the memory map
i bSymbols
i t-Custom Code —TLM Component Processing
1. Real Time Worksho
B i Report 3 ¥ Create an interrupt request port on the generated TLM component
L Comments ¥ Enable payload buffering
Symbols X
Custom Code Payload input buffer depth: |S
Debug Payload output buffer depth: I 5
Interface
[V Enable quantum for loosely-timed simulation
TLM Testbench Quantum for loosely-timed components (ns): I 1000
+-TLM Compilation
—TLM Timing
Algorithm step function (ns): I 100
Single write transfer or the first write transfer in a burst transaction (ns): I 10
Subsequent write transfers in a burst transaction (ns): | 10
Single read transaction or the first read transfer in a burst transaction (in ns): I 10 o
Subsequent read transfers in a burst transaction (ns): I 10
—TLM Component Naming
User-defined tag for TLM component names: Ilmm
=
J- oK I Cancel | Help | Apply |

See Chapter 9, “Selecting Features for the Generated TLM Component” for a
full explanation of the TLM component generation options.

Select Options for Associated Test Bench

First, select the TLM Testbench pane (as shown in the following figure) and
select option to generate test bench.

8-13

8 Overview to TLM Component Generation

8-14

‘onfiguration Pa eters: timgdemo_intro[Configuration (Active)
Select: ~Testbench Generation
Solver
- Data Import/Export ¥ Generate testbench.
- Optimization I™ Generate verbose messages during testbench execution
= D@DWS‘]ES —Run-time timing mode
iSample Time
Data Validity & With timing
i Type Conversion
: Connectivity " Without timing
-Compatibility
i~Model Referencing —Input buffer triggering mode
b-Saying
+Hardware Implementation & automatic
-~ Model Referencing i Manual
[E-Simulation Target
“Symbals —Output buffer triggering mode
-Custom Code
El-Real Time Workshop 1+ Automatic
+Report
Comments ¢ Venal
~Symbols
-Custom Code Verify TUM Component
-Debug
‘Interface
“TLM Generation
i~ TLM Testbench
i--TLM Compilation
J OK I Cancel Help Apply

[lx

Next, specify your choices for the following test bench options:

1 Specify if you want the test bench to generate verbose messages during
test bench execution.

2 Select runtime timing mode.
3 Specify input buffer triggering mode.
4 Specify output buffer triggering mode.

5 Generate TLM component.

6 Return to the TLM Testbench pane. Select Verify TLM Component.

User Workflow for TLM Component Generation

Note You must generate the component and test bench before you can
select Verify TLM Component. See “Generate TLM Component” on page
8-16.

See Chapter 10, “Creating and Applying a Test Bench for the Generated TLM
Component” for full details on the test bench options available.

Specify Attributes for Generated makefile

As part of using the generated TLM component, you must compile the
generated files using a generated makefile provided by EDA Simulator Link
software. The TLM Compilation pane provides the user interface you need
to specify certain makefile attributes. For more about using the generated
TLM component, see Chapter 11, “Using TLM Components in a SystemC
Environment”.

Select the TLM Compilation pane, as shown in the following figure

8-15

8 Overview to TLM Component Generation

8-16

gé, Configuration Parameters: model/Configuration (Active)

Select: Compiler Options

- Sabver
- [iata ImportjExport SystemC include path: | FISYSTEMC _IMC_PATH)
- Optimization SystemC library path: [$(SYSTEMC_LIB_PATH)
[=]-Diagnostics
-~ Sample Time TLM include path: — [$(TLM_INC_PATH)
~~Diata Yalidity

™ Compile with debug flags
- Type Conversion

- Connecivity
- Compatibility
~~Madel Referencing
== Saving
~Hardware Implementation
-~ Model Referencing
[=-Simulation Target
i b-Symbols
i wCustom Code
[=-ReakTime Workshop
- Report
-~ Comments
- Symbals
Custom Code
~~Debug
Interface
-~ TLM Generation

[=-HDL Coder

-~ Global Settings
Test Bench

~~EDA Toaol Scripts

J [s]'3 I Cancel Help Apply

|r

Next, specify attributes for the generated makefile:

1 Enter path to include SystemC.
2 Enter path to SystemC libraries.
3 Enter path to TLM component files.

4 Specify whether or not you want debug flags included in compilation.

Generate TLM Component

You can execute code generation in multiple ways:

® Press Ctrl-B (full model).

¢ Right-click on the subsystem and select Real-Time Workshop > Build
Subsystem.

User Workflow for TLM Component Generation

¢ Select Tools > Real-Time Workshop > Build Model (this option builds
the full model).

¢ In Configuration Parameters dialog box, select the Real-Time Workshop
pane, and then click the Generate code button (the option builds the
full model).

You must generate the component and test bench on the architecture you
plan to use when running the SystemC simulation.

Verify the Generated TLM Component

After the TLM component and test bench have been generated, you can return
to the TLM Compile pane to verify the generated TLM component using the
test bench that was just created. To do so, click Verify TLM Component.

See “Verify TLM Component” on page 10-7.

8-17

8 Overview to TLM Component Generation

8-18

Selecting Features for the
Generated TLM Component

® “Overview of Component Features” on page 9-2

e “Memory Mapping” on page 9-4

* “Interrupt” on page 9-14

o “Test and Set Register” on page 9-15

® “The Quantum” on page 9-16

e “Buffering” on page 9-17

e “TLM Component Timing Values” on page 9-18

e “TLM Component Naming and Packaging” on page 9-19

9 Selecting Features for the Generated TLM Component

Overview of Component Features

The TLM generator exports a target TLM component from a Simulink model
subsystem. The target TLM component has a single TLM socket that supports
read and write transactions using the TLM generic protocol and generic
payload. There are a number of options you can use to control the architecture
of the generated TLM component. Incorporating a memory map is one of the
most effective options. The following figure demonstrates the behavior of a
generated TLM component with a full complement of features enabled.

q,.
e
o
i

i
e
%ﬁ%@%@%&%&a
mEnmae
S

i éé*m-a»
inieflace.
SETTEEnl

Lot

PETTEE
e
s
b
i

T
o
e
o

i
e
o
it

S . e anie
Memory Map e
e e e
. S
s :

s
o
=
i

2
o
o
i

Addr Inputt
Addr Input2

ot

o
Tk
dee
it

e
L

T

Eigad
L

Gt
s

Addr Outputl
Addr Output2

pr
i

o
i
2y
o

(I
c
i

- Command/Status e o)
Eommmmmmmee . - wmmmamaaaaa
B S I S R e ¢,‘!"¢'!:','3'¢,‘!',g!g!:';!'¢&¢£&ﬁ*&¢&¢ﬁ*ﬁ*&¢&¢ﬁ*&*&é
G S
Timing Annotations e

it

S S S B

You can set options for the following TLM component features:

e “Memory Mapping” on page 9-4

= No memory map

= Automatically generated memory map with single address

= Automatically generated memory map with individual addresses
¢ “Command and Status Register” on page 9-6

¢ “Interrupt” on page 9-14

9-2

Overview of Component Features

“Test and Set Register” on page 9-15

“The Quantum” on page 9-16

“Buffering” on page 9-17

“TLM Component Timing Values” on page 9-18

“TLM Component Naming and Packaging” on page 9-19

9 Selecting Features for the Generated TLM Component

9-4

Memory Mapping

In this section...

“No Memory Map” on page 9-4
“Automatically Generated Memory Map with Single Address” on page 9-5

“Automatically Generated Memory Map with Individual Addresses” on
page 9-5

“Command and Status Register” on page 9-6

No Memory Map

The no memory map option generates a TLM component with only one read
and one write register without any address. The Simulink model inputs are
bound to the write register and the outputs are bound to the read register.

Without a memory map, the generated TLM component has the following
characteristics:
¢ Has a single input register and a single output register.

® Does not need—and cannot accept—an address in the read and write
requests during SystemC simulation to select specific registers on the
device.

= Receives all input data must be provided in a single write request, and a
read request receives all output data in the return value

¢ Has input and output registers either sized to hold an entire data set
required or created by the TLM component when it executes the behavior
(algorithm step function) in your virtual platform environment

® Triggers (schedules) execution of the behavior in the SystemC simulator

when the input data set is written to the input register

When you generate the TLM component with this option, you can use it in
a virtual platform (VP) as:

® A standalone component in a test bench

e A direct bound coprocessing unit

Memory Mapping

® A device attached to a communication channel using a protocol adapter

Automatically Generated Memory Map with Single
Address

The automatically generated memory map with single address option
generates a TLM component with only one read data register and one write
data register with one address each. The Simulink model inputs are bound to
the write register, and the outputs are bound to the read register.

When you generate the TLM component with this option, you can use it in a
virtual platform (VP) as a standalone component in a test bench, or you can
attach it to a communication channel.

Automatically Generated Memory Map with
Individual Addresses

The automatically generated memory map with individual address option
generates a TLM component with one read data register per model output
and write data register per model input with individual addresses. Each
Simulink model input is bound to its corresponding write register, and each
output is bound to its corresponding read register.

When you generate the TLM component with this option, you can use it in a
virtual platform (VP) as a standalone component in a test bench, or you can
attach it to a communication channel.

EDA Simulator Link software automatically assigns the addresses required
to access those specific registers during code generation. Those addresses
give the specific offsets required to address each individual register via read
and write operations.

Definition of the base address for the entire generated TLM component should
be defined by the virtual platform that the TLM component resides in. The
offset address definitions appear in a definition file that is generated along
with the TLM component.

9 Selecting Features for the Generated TLM Component

9-6

Command and Status Register

You can choose to generate a TLM component with an automatically
generated memory map with addresses. When you do so, the TLM generator
offers you the option to incorporate a Command and Status register (CSR)
in the generated TLM component. The definition for this register appears
in the table.

Write-Only Bits

Write-only (WO) bits assert mutually exclusive commands. You can assert
only one command bit in any single write operation to the CSR. If more than
one command bit is set in the write to the CSR, the command is undefined.
You activate each command by writing a 1 to a command bit in the register.
Then, each command bit is automatically cleared after the command has been
executed. You do not have to write a 0 to the register to clear a command bit.
Write-Only bits are always returned as 0 in any read of the CSR. Writing a
command does not overwrite the Read/Write or Write-Only bits.

Read-and-Write Bits

Use Read and Write (R/W) bits to obtain the current status and setting. R/'W
bit are sticky, meaning that after you set them by writing a 1 to the bit in the
register, an R/W bit remains set until a 0 is written to the same bit or the

Reset command is invoked. Read-and-Write bits return their actual values to

any read of the CSR.

A single write operation to the CSR sets all Read-and-Write bits in the
register. You can choose to set only some of the bits and maintain the
previous values of others. Before you do so, you must first read the CSR and
then modify the values according to your requirements. After you complete
modifications, you can write the entire 32 bits back to the CSR.

Read-Only Bits

Read-Only (RO) bits provide status information. The generated TLM
component automatically sets and clears their values, and an initiator module
can read them to learn status. Read-Only bits do not change their actual
values during any read or write of the CSR.

Memory Mapping

Register Definition
The following table contains the entire register definition.

<7 | <6> | <5> [<4> <3 <2 <1 <0
Interrupt | Interrupt | Start Reset
Reserved Disable | Status
W RO WO WO
<15> | <14> <13> <12= <11= <10> <9 <8
Output | Pull Input Push
Auto Output Auto Input
Reserved Mode P Reserved Mode P
R'W WO W WO
23> <22 <21 <20 <19 <18> <17 <16
Output Output Output Output Input Input Input Input
Buffer Buffer Buffer Buffer Buffer Buffer Buffer Buffer
Overflow | Underflow | Full Empty Overflow | Underflow | Full Empty
R'W W RO RO W W RO RO
<31> <30= <29> <28> <27= <26> <25> <24>
Reserved

The following table explains how the bits are defined.

Bit Name Read/Write Description
Status
CSR<0> | Reset Write Only When set to 1, the following are
Command true:

® Input register contents are
made invalid

® Qutput register contents are
made invalid

e All CSR bits are set to 0 except
the following:

= Input Buffer Empty bit is
set to 1

9-7

9 Selecting Features for the Generated TLM Component

Bit Name Read/Write Description
Status

= Output Buffer Empty bit is
set to 1

= Input Auto Mode is set to
default

= Output Auto Mode is set to
default

Automatically returns to 0 after
command execution.

CSR<1> | Start Write Only Manually triggers execution of
Command the TLM component behavior
using the input data set that is
currently in the input register
when there is no input buffering.

When input buffering is used,
this command is undefined.

CSR<2> | Interrupt | Read Only Reflects the current state of
Status the Interrupt signal. Provides
status only; sets and clears itself
automatically.

CSR<3> | Interrupt | Read and Write | When set to 0 allows interrupts
Disable to be generated on the Interrupt
signal and reflected in the

Interrupt Status bit of the CSR.

When set to 1 disables generation
of interrupts.

9-8

Memory Mapping

Bit Name Read/Write Description
Status
CSR<8> | Push Write Only When buffering is used and the
Input Input Mode is equal to 0 (manual
Command mode), this command allows an

initiator module to move the
input data set from the input
register to the input buffer. It
then triggers execution of the
TLM component behavior.

When buffering is not used, this
command is undefined.

When Input Mode is 1
(automatic), this command
1s undefined.

CSR<9> | Input Read and Write | When set to 1 (automatic),
Mode movement of the input data set
from the input register to the
input buffer and execution of
the TLM component behavior
is triggered automatically if

a complete data set has been
written to the input register.

When set to 0 (manual):
movement of the input data set
from the input register to the
input buffer and execution of
the behavior must be manually
initiated. Do so by writing the
Start Command bit to 1, if no
buffering is used, or writing the
Push Input Command to 1, if
buffering is present.

By default the Input Mode

is set to 1 (automatic). The
default may be changed to 0
(manual) if you specify it in the

9-9

9 Selecting Features for the Generated TLM Component

Bit Name Read/Write Description
Status

TLM component constructor

parameters.
CSR<12>| Pull Write Only When buffering is used and the
Output Output Mode is set to 0 (manual
Command mode), this command allows an

Initiator module to move the
output data set from the head of
the output buffer to the output
register.

When buffering is not used, this
command has no effect.

When Output Mode is 1
(automatic), this command is

undefined.
CSR<13>| Output Read and Write | When set to 1 (automatic),
Mode movement of data from the

head of the output buffer to

the output register is triggered
automatically by the execution
of the TLM component behavior.

When set to 0 (manual),
movement of data from the head
of the output buffer to the output
register must be manually
initiated. Do so by writing the
Pull Output Command to 1, if
buffering is present.

By default the Output Mode

1s set to 1 (automatic). The
default may be changed to 0
(manual) if you specify it in the
TLM component constructor
parameters.

9-10

Memory Mapping

Bit

Name

Read/Write
Status

Description

CSR<16>

Input
Buffer
Empty

Read Only

When set to 1, any TLM
component behavior execution
without first pushing input
data to the input buffer, either
automatically or manually,
causes the Input Buffer
Underflow status to be asserted.

This bit is set to 0 by the TLM
component when the buffer is
not empty.

CSR<17>

Input
Buffer
Full

Read Only

When set to 1, any push of input
data to the input buffer, either
automatically or manually,
without first executing the TLM
component behavior, causes the
Input Buffer Overflow status to
be asserted.

This bit is set to 0 by the TLM
component when the buffer is
not full.

CSR<18>

Input
Buffer
Underflow

Read and Write

This bit is set to 1 by the TLM
component when an action is
taken to initiate execution of the
TLM component behavior with
no data available in the input
buffer.

This bit is sticky and can be
cleared with a write transaction
to set it back to 0.

9-11

9 Selecting Features for the Generated TLM Component

Bit Name Read/Write Description
Status
CSR<19>| Input Read and Write | This bit is set to 1 by the TLM
Buffer component when input data is
Overflow pushed to the input buffer, either

automatically or manually, and
it is already full.

This bit is sticky and can be
cleared with a write transaction
to set it back to O.

CSR<20>| Output Read Only When set to 1, any pull of
Buffer output data from the output
Empty buffer, either automatically

or manually, without first
executing the TLM component
behavior, causes the Output
Buffer Underflow status to be
asserted.

This bit is set to 0 by the TLM
component when the buffer is

not empty.
CSR<21>| Output Read Only When set to 1, any TLM
Buffer component behavior execution
Full without first pulling output data

to the output registers, either
automatically or manually,
causes the new output data to be
lost and Output Buffer Overflow
status to be asserted.

This bit is set to 0 by the TLM
component when the buffer is
full.

9-12

Memory Mapping

Bit Name Read/Write Description
Status
CSR<22>| Output Read and Write | This bit is set to 1 by the TLM
Buffer component when an action is
Underflow taken to pull data from the
output buffer to the output
register, either automatically or
manually, and there is no data
available in the output buffer.
This bit is sticky and can be
cleared with a write transaction
to set it back to 0.
CSR<23>| Output Read and Write | This bit is set to 1 by the TLM
Buffer component when the TLM
Overflow component behavior is executed

and the output buffer is already
full, causing the new output data
to be lost.

This bit is sticky and can be
cleared with a write transaction
to set it back to O.

9-13

9 Selecting Features for the Generated TLM Component

9-14

Interrupt

You can choose to have an interrupt signal added to the generated TLM
component. The TLM component will assert this signal whenever new outputs
are available in any output register. The signal is automatically cleared
whenever a value is read from any output register.

The Interrupt signal is an ordinary SystemC boolean signal active high. The
Interrupt Active bit in the Status Register reflects the state of the interrupt
signal.

Test and Set Register

Test and Set Register

EDA Simulator Link software optionally provides the test and set register as
a means of controlling access to a shared TLM component in your SystemC
environment. Any read of this register returns the current value and sets the
register to a new, asserted value in an atomic operation. In systems where
there are multiple initiator modules, executing this task usually requires
access to the same target. If so, then an initiator module has exclusive
access to the generated TLM component as long as a common lock protocol is
followed by all other initiator modules. The initiator modules must read the
test and set register and use the target device only when that read operation
returns a value of zero. An initiator module can be sure that any subsequent
read of the test and set register returns a value of 1, which indicates to other
initiator modules that the device is busy. After gaining exclusive access to
the TLM component, an initiator module must release it when the target
operations complete by writing a zero to the test and set register.

9-15

9 Selecting Features for the Generated TLM Component

The Quantum

The generated TLM component can function cooperatively in a temporally
decoupled simulation as described in the OSCI TLM-2.0 Language Reference
Manual. The Configuration Parameters interface provides an option to allow
you to specify the duration of the time quantum allocated to the generated
TLM component in your system simulation.

9-16

Buffering

Buffering

The TLM generator allows you to choose to enable or disable payload
buffering. To do so, incorporate input data and output data that queues a
FIFO queue in the generated component.

You can specify independent input and output FIFO queue depths. When the
FIFO is present, the generated TLM component behaves as follows:

® Accepts input write operations up to the capacity of the input FIFO

¢ Executes the algorithm step function until the quantum has expired or the
output FIFO capacity limit has been reached

9-17

9 Selecting Features for the Generated TLM Component

9-18

TLM Component Timing Values

You can specify that timing values be stored in the TLM component and
supplied to the SystemC environment when the TLM component is used.
Those values can be used in a system simulation environment which
carries out accounting of execution times in the system, as described in

the OSCI TLM-2.0 Language Reference Manual. These values—which you
supply—represent approximations of the actual time consumed by operations
involving the target device in a real system. They also add temporal realism
to your system simulations.

At runtime, you can dynamically control the TLM component via a backdoor
interface to enable and disable the return of timing information. See the
generated test bench code for details (locate mw_backdoorcfg_IF).

You can represent the following timing values:

¢ Time consumed by execution of the behavior in the generated TLM
component (this delay is simulated by a wait() in the TLM component
thread executing the algorithm step function)

¢ Time consumed by a write transfer to the TLM component (this delay is
returned to the initiator as a time annotation in transaction), with these
further qualifiers:

= Time consumed by a single write transaction or the first write operation
of a burst

= Time consumed by a subsequent write operation in a burst

® Time consumed by a read transfer from the TLM component (this delay is
returned to the initiator as a time annotation in transaction), with these
further qualifiers :

= Time consumed by a single read transaction or the first read operation of
a burst

= Time consumed by a subsequent read operation in a burst

TLM Component Naming and Packaging

TLM Component Naming and Packaging

An option in the configuration parameters for TLM Generation allows you
to specify use of a unique tag in naming the generated TLM component.
See “Using the Generated TLM Component Files” on page 11-4 to see how
the user tag is applied.

9-19

9 Selecting Features for the Generated TLM Component

9-20

Creating and Applying
a Test Bench for the
Generated TLM Component

e “Testing TLM Components” on page 10-2
e “TLM Component Test Bench Generation Options” on page 10-6

1 0 Creating and Applying a Test Bench for the Generated TLM Component

10-2

Testing TLM Components

In this section...

“TLM Component Test Bench Overview” on page 10-2

“TLM Component Compilation” on page 10-2

“Automatic Verification of the Generated Component” on page 10-3
“Report Generation” on page 10-3

“Working with Configurations” on page 10-3

“Considerations When Creating a TLM Component Test Bench” on page
10-4

TLM Component Test Bench Overview

The test bench generation option is controlled by the TLM Testbench pane
of the Configuration Parameters dialog box. This option creates a standalone
SystemC test bench for the generated component. The test bench works by
applying test vectors against the generated TLM component and checking the
results of each transaction. When you click the Verify TLM Component
button on the TLM Testbench pane, the test vectors are automatically
captured from a Simulink simulation of your model .

You can configure the generated test bench to specify the timing mode and
the triggering modes for input and output buffering. The latter choice
allows you to indicate whether the initiator module controls moving input
and output data sets between the registers and the buffers or whether the
component performs the moves automatically. Optionally, the test bench can
also produce verbose messages at runtime to help you see the status of the
SystemC simulation.

TLM Component Compilation

The TLM Compilation pane in the Configuration Parameters dialog box
provides SystemC and TLM library location information. You can use
environment variables to specify these locations.

Testing TLM Components

The information you provide is used to construct makefile. You can use
these makefiles to build the component and test bench. You can also use
this makefile to build an executable of the TLM component and test bench
outside of the MATLAB environment.

Automatic Verification of the Generated Component

The TLM Testbench pane of the configuration parameters provides a Verify
TLM Component button that:

® Automatically generates input stimulus and expected output data
® Builds and executes the component and the test bench together
e Automatically checks the outputs of the component

It performs the checking by capturing the outputs from the SystemC
simulation, converting them to Simulink data, and comparing them in
Simulink to the results of the Simulink simulation.

Report Generation

The tlmgenerator target supplies an HTML document containing details
about the generated component. The document contains links to the
generated source code files. Report generation can be configured via the
Real-Time Workshop Report pane in the configuration parameters. Report
generation 1s not strictly a test bench feature, but the process does include
use of test bench files.

Working with Configurations

After you select configuration options, you can save them with your Simulink
model. You can also restore saved configurations made in a previous session.
In addition, you can save and choose from multiple configurations for a
given model. See the “Managing Configuration Sets” section of the Simulink
documentation for information on working with configurations.

10-3

1 0 Creating and Applying a Test Bench for the Generated TLM Component

10-4

Considerations When Creating a TLM Component
Test Bench
For optimizing your generated TLM code and achieving a successful test

bench, you should keep the following considerations in mind when developing
your Simulink model:

Your model can use only a single rate.

The composite signals on your model must be contiguous in memory.
You can make mux and bus output signals contiguous with the Signal
Conversion block.

If your model contains complex signals, you must split them first. Split
complex signals with the Simulink Complex to Real-Imag block. You can
then combine the signals again with the Real-Imag to Complex block on
the other side of your design.

Your design can contain a Triggered or Enabled subsystem, but the design
you generate cannot itself be a Triggered or Enabled subsystem.

EDA Simulator Link can generate a Simulink design that involves
continuous time signals. When the Simulink simulation and the captured
vector replay in SystemC, they may not yield exactly the same results. The
plot of the difference reveals essentially the same curve with numerical
differences that are more pronounced at signal transitions, as shown in the
following MATLAB Figure windows.

Testing TLM Components

Eile Edit “iew Insert Tools Deskiop Window Help ~ M File Edit Yiew |nsert Tools Desk:
DEE | RADDEL- 2| 0B | nD NEde |[HRXRTDE
L]
Data Cormpatison for Signal tlmgouh Data Comy
1000 T T T T T T T T
-~ Original Sirmulink Data
2
500 — & — TLM Response Data [
& 3
0 g i H] _
% o 4
-500 T l
1000 1 1 1 1 1 1 2
o] 100 200 300 400 500 G600 700 I 1
o] 100 200
Difference O
200 T T — T T T
13 B 2 T T
700
-2 1 1
0 100 200

This difference occurs because the Simulink signal capture necessarily
makes the signals discrete and thus the same exact data is not used in
both the Simulink and stand-alone SystemC simulations. You can improve
the fidelity of the discrete signal simulation in SystemC by choosing a
smaller fundamental step size in Simulink before clicking Verify TLM
Component.

10-5

1 0 Creating and Applying a Test Bench for the Generated TLM Component

10-6

TLM Component Test Bench Generation Options

In this section...

“Verbose Messaging” on page 10-6
“Run-Time Timing Mode” on page 10-6
“Input and Output Buffer Triggering Modes” on page 10-6

“Verify TLM Component” on page 10-7

Verbose Messaging

This option generates verbose messages during test bench execution. The
default is not to generate these messages.

Run-Time Timing Mode

This mode allows you to specify which timing mode the generated test
bench and TLM component uses. With timing mode selected, the target
annotates TLM component transactions with delays, and the initiator module
honors them. When a quantum keeper is not used (see “The Quantum” on
page 9-16), the initiator module synchronizes immediately following the
transaction execution. When a quantum keeper is used, the initiator module
uses temporal decoupling and does not synchronize to the annotated delays
until the quantum is reached.

With timing mode not selected, the target does not annotate TLM component
transaction with any delays. The initiator module and target only perform
synchronization using zero-time wait calls.

Input and Output Buffer Triggering Modes

Input and output buffer triggering modes specify when data is moved from
registers to buffers and back. In your TLM environment, these specifications
are performed via a runtime configuration command. You can change them
dynamically throughout simulation.

TLM Component Test Bench Generation Options

Input Buffer Triggering Mode

This option allows you to specify when data moves from the input register to
the execution buffer.

The default is automatic mode. In this mode, the TLM component
automatically moves input data sets from the input registers to the input
buffer. If you instead choose manual mode, the initiator module must
explicitly write a command to the command and status register to move the
input data set from the register to the input buffer.

Manual mode enables an initiator module to re-use a complete or partial
input data set for a subsequent execution of the algorithm, thereby saving

simulation time by avoiding unnecessary data TLM component transactions.

For example, if the target uses a full memory map and the initiator module
detects that only one of the inputs is changing, the initiator module may
execute TLM component transactions only for the changing input. The
initiator module then writes a push command to execute the algorithm.

Output Buffer Triggering Mode

Specify when data is moved from the results buffer to the output register.

The default is automatic mode. In this mode, the TLM component
automatically moves output data sets from the output buffer to the output
registers. If you choose manual mode instead, the initiator module must
explicitly write a command to the command and status register to move the
output data set from the output buffer to the output registers.

Manual mode enables an initiator module to read only partial output data
sets, saving simulation time by avoiding unnecessary TLM component
transactions. For example, if the target uses a full memory map and the
initiator module is only interested in the data for one of the outputs, the
initiator module can manually move the algorithm results to the register.
The initiator module can then execute TLM component transactions only for
the output of interest.

Verify TLM Component

Click Verify TLM Component to run the generated test bench. Verify
TLM Component performs the following actions:

10-7

1 0 Creating and Applying a Test Bench for the Generated TLM Component

10-8

Builds the generated code

Runs Simulink to capture input stimulus and expected results
Converts the Simulink data to TLM component vectors.

Runs the standalone SystemC/TLM component test bench executable
Converts the TLM component results back to Simulink data
Performs a data comparison

Generates a Figure window for any Simulink and generated TLM
component signals whose data does not matchosim.

Using TLM Components in
a System(C Environment

e “TLM Component Compiler Options” on page 11-2
¢ “Using the Generated TLM Component Files” on page 11-4

11 Using TLM Components in a SystemC Environment

11-2

TLM Component Compiler Options

In this section...

“About the TLM Component Compiler Options” on page 11-2
“SystemC Include Path” on page 11-2

“SystemC Library Path” on page 11-2

“TLM Include Path” on page 11-3

“Compile with Debug Flags” on page 11-3

About the TLM Component Compiler Options

The SystemC and TLM include and library path options allow you to specify
where the makefiles can find the SystemC and TLM installations. EDA
Simulator Link software writes these strings directly into the generated
makefiles.

The default values are environment variables (for example,
$SYSTEMC_INC_PATH, $SYSTEMC_LIB_PATH, and $TLM_INC_PATH). If you choose
to use the default and define the environment variables in your system, you
can usually update your SystemC/TLM installation without having to update
your Simulink models.

SystemC Include Path

Specify the location of the include folder in your SystemC installation. For
example:

/systemc-2.2.0/include

Alternately, you can use the default and define
$SYSTEMC_INC_PATH=/tools/systemc-2.2.0/include in your system.

SystemC Library Path

Specify the location of the library folder in your SystemC installation. For
example:

/systemc-2.2.0/1ib

TLM Component Compiler Options

Alternately, you can use the default and define
$SYSTEMC_LIB_PATH=/systemc-2.2.0/1ib in your system.

TLM Include Path

Specify the location of the include folder in your TLM installation. For
example:

/tlm-2.0/include

Alternately, you can use the default and define
$TLM_INC_PATH=/t1lm-2.0/include in your system.

Compile with Debug Flags

When you select this check box, this option allows the generation of makefiles
with debug flags and without optimization flags. Makefiles generated with
this option produce an executable with symbols for source code debugging.

11-3

11 Using TLM Components in a SystemC Environment

Using the Generated TLM Component Files

In this section...

“How to Identify Generated Files” on page 11-4
“Create Static Library with the TLM Component” on page 11-5

“Create Standalone Executable with the TLM Component and Test Bench”
on page 11-6

How to Identify Generated Files

After code generation completes, go to your working folder. There you can find
the following folder: model_name_ VP/. This folder contains the files generated
for the TLM component. The files appear under the following subfolders:

® model _name_usertag_tlm/

Contains the generated TLM component. The files are sorted in
subdirectories by source and header.

= model name.h and model name.cpp
Contain the core behavior generated from the Simulink model.

= model name_usertag_tlm.h and model name usertag tlm.cpp
Contain the TLM interface to wrap this behavior.

= model_name_usertag_tlm_def.h

Contains addresses and definitions to communicate with the component
through the TLM target port using a TLM generic payload.

EDA Simulator Link provides a makefile for you to build a static library
from these source files.

® model name_usertag _tlm_tb/

Contains the TLM test bench for the generated TLM component. The files
are sorted in subdirectories by source and header.

= model name_usertag_tlm_tb.h and model name usertag tlm tb.cpp

Contain the core behavior of the test bench.

114

Using the Generated TLM Component Files

= model_name_usertag_tlm_tb_main.cpp
Instantiates and binds the component and the test bench together.

EDA Simulator Link software provides a makefile for you to build an
executable from these source file and the component static library. This
executable requires the following:

= Certain MATLAB libraries the executable needs to be built and run.
These MATLAB libraries are the static libraries 1ibmat.a and 1ibmx.a
and their dynamic counterparts.

= The vector .mat files generated when you click the Verify TLM
Component button. Before building the component and test bench on
the virtual platform, verify that the TLM component includes these files.

® model name_usertag tlm_doc/

Contains the HTML documentation for the generated TLM component.
The file model name codegen _rpt.html is the entry point of the HTML
documentation.

Create Static Library with the TLM Component

Create a static library that contains the generated TLM component by
following these steps:

1 Open a Linux console window.
2 Navigate to the model name VP/model name usertag tlm/ folder.
3 Execute the following command to start the library compilation:

make -f makefile.gnu all

4 When the system finishes compiling, locate a library
file named libmodel_name_usertag_tlm.a in the
model_name_VP/model_name_usertag_tlm/1lib/ folder.

Note The temporary object files reside in the
model_name_VP/model_name_usertag_tlm/obj/ folder.

11-5

11 Using TLM Components in a SystemC Environment

Create Standalone Executable with the TLM
Component and Test Bench

You can create a standalone TLM executable in the command shell by
following these steps:

1 Open a Linux console window.
2 Navigate to the model name VP/model name usertag tlm_tb/ folder.
3 Execute the following command to start the library compilation:

make -f makefile_tb.gnu all

Note Executing this command also automatically builds a static library
with the TLM component source files.

4 When the system finishes compiling, locate an executable
file named libmodel_name_usertag _tlm_tb.exe in the
model name_ VP/model name usertag tlm_ tb/ folder

11-6

Configuration Parameters
for TLM Generator Target

o “TLM Generation Pane” on page 12-2
o “TLM Testbench Pane” on page 12-21
e “TLM Compilation Pane” on page 12-28

1 2 Configuration Parameters for TLM Generator Target

12-2

TLM Generation Pane

#, Configuration Pa ters: timgdemo_intro/Configuration (Active) ﬂ
Select: —TLM Memory Mapping =]
-~ Solver Memary Map Type
+Data Import/Export
- Optimization * No memory map
[I-Diagnostics ~
-Sample Time Auto-generated memory map
-Data Validity
“Type Conversion —TLM Companent Processing
i Connectivity
- Compatibility [¥ Create an interrupt request port on the generated TLM component
~-Model Referencing
H v il
- Saving ¥ Enable payload buffering
Hardware Implementation Payload input buffer depth: I 5
~Model Referencing
Simulation Target Payload output buffer depth: I 5
“Symbals ¥ Enable guantum for loosely-timed simulation
H Custom Code
E--Real Time Workshop Quantum for loosely-timed components (ns): | 1000
Report
i--Comments —TLM Timing
Symbols
-Custom Code Algorithm step function {ns): I 100 1
“Debug Single write transfer or the first write transfer in a burst transaction (ns): I 10
‘Interface
-TLM Generation Subsequent write transfers in a burst transaction (ns): | 10
“TLM Testbench
L.TLM Compilation Single read transaction or the first read transfer in a burst transaction (in ns): I 10
Subsequent read transfers in a burst transaction (ns): I 10
—TLM Component Naming
User-defined tag for TLM component names: Ilmm
=
\,)' oK I Cancel Help Apply |

In this section...

“TLM Component Generation Overview” on page 12-4

“Memory Map Type” on page 12-5

“Auto-Generated Memory Map Type” on page 12-6

“Include a command and status register in the memory map” on page 12-7
“Include a test and set register in the memory map” on page 12-8

“Create an interrupt request port on the generated TLM component” on
page 12-9

“Enable payload buffering” on page 12-10
“Payload input buffer depth” on page 12-11
“Payload output buffer depth” on page 12-12

TLM Generation Pane

In this section...

“Enable quantum for loosely-timed simulation” on page 12-13

“Quantum for loosely-timed components (ns)” on page 12-14

“Algorithm step function (ns)” on page 12-15

“Single write transfer or the first write transfer in a burst transaction (ns)”
on page 12-16

“Subsequent write transfers in a burst transaction (ns)” on page 12-17

“Single read transaction or the first read transfer in a burst transaction
(ns)” on page 12-18

“Subsequent read transfers in a burst transaction (in ns)” on page 12-19

“User-tag for TLM component names” on page 12-20

12-3

1 2 Configuration Parameters for TLM Generator Target

TLM Component Generation Overview

Specify options for exporting a Simulink algorithm (model or subsystem) to an
OSCI-compatible SystemC/TLM component.

12-4

TLM Generation Pane

Memory Map Type

Choose the type of addressing scheme for the generated TLM component.

Settings
Default:No memory map

e No memory map: Create a single input register and a single output
register in the generated TLM component

* Auto-generate memory map: Create a single input address and a single
output address for all inputs and outputs or create a separate input register
for every input signal and a separate output register for every output signal

Dependencies
This parameter enables Auto-Generated memory map Type.

Setting this parameter to Auto-generate memory map opens the
Auto-Generated Memory Map Type options selection.

Command-Line Information

Parameter: tlmgComponentAddressing

Type: string

Value: 'No memory map' | 'Auto-generated memory map'
Default: 'No memory map'

See Also
Memory Mapping

12-5

1 2 Configuration Parameters for TLM Generator Target

12-6

Auto-Generated Memory Map Type

Choose the type of addressing scheme to be automatically generated.

Settings
Default: Single input and output address offsets

¢ Single input and output address offsets: Create a single address offset
for the inputs and a single address offset for the outputs

¢ Individual input and output address offsets: Generate an address for
each input and each output

Dependencies
Auto-Generated memory map enables this parameter.

Command-Line Information

Parameter: t1mgAutoAddressSpecType

Type: string

Value: 'Single input and output address offsets' | 'Individual
input and output address offsets'

Default: 'Single input and output address offsets'

See Also
Memory Mapping

TLM Generation Pane

Include a command and status register in the
memory map
Allows an initiator to send the TLM component commands such as "reset" and

nn

"start", as well as read status bits such as "interrupt active", "output buffer
overflowed", and "input buffer empty".

Settings
Default: On
v On

Include a command and status register in the memory map

I off

Do not include a command and status register in the memory map

Dependencies
Auto-Generated Memory Map enables this parameter. You cannot have a
command and status register if there is no memory map.

Command-Line Information

Parameter: t1mgCommandStatusRegOnOff
Type: string

Value: 'on' | 'off!'
Default: 'on'
See Also

Command and Status Registers

12-7

1 2 Configuration Parameters for TLM Generator Target

12-8

Include a test and set register in the memory map

Provides a means of controlling access to a shared TLM target device in your
SystemC environment.

Settings
Default: Off

¥ On
Include a test and set register in the memory map. Any read of this
register will return the current value and set the register to a new,
asserted value in an atomic operation.

™ ofr

Do not include a test and set register in the memory map

Dependencies
Auto-Generated Memory Map enables this parameter.

Command-Line Information

Parameter: tlmgTestAndSetRegOnOff
Type: string

Value: 'on' | 'off!'

Default: 'off'

See Also
Test and Set Register

TLM Generation Pane

Create an interrupt request port on the generated
TLM component
Specify that an interrupt signal be added to the generated TLM component.

Settings
Default: Off

¥ On
Create an interrupt request port on the generated TLM component.
This signal will be asserted whenever new outputs are available in the
output register(s) and will be automatically cleared whenever any value
1s read from the output register(s).

I off
Do not create an interrupt request port on the generated TLM
component

Command-Line Information

Parameter: tlmgIrqPortOnOff
Type: string

Value: 'on' | 'off'
Default: 'on'

See Also

Interrupt

12-9

1 2 Configuration Parameters for TLM Generator Target

12-10

Enable payload buffering

Payload buffering allows for initiators to write multiple input data sets for the
algorithm step function and for the storage of multiple output data sets.

Settings
Default: Off

¥ On
Enable payload buffering. Enabling payload buffering allows for a
different sample rate than was used in the original Simulink model.

I off
Do not enable payload buffering

Dependencies

This parameter enables Payload input buffer depth and Payload output
buffer depth.

Command-Line Information

Parameter: tlmgPayloadBufferingOnOff
Type: string

Value: 'on' | 'off!'

Default: 'off"

See Also
Buffering

TLM Generation Pane

Payload input buffer depth

Choose the maximum number of possible outstanding input data sets before
triggering algorithm execution.

Settings
Default: 1

Dependencies
Enable payload buffering enables this parameter.

Command-Line Information

Parameter: tlmgPayloadInBufferDepth
Type: int

Value:

Default: 1

See Also
Buffering

12-11

1 2 Configuration Parameters for TLM Generator Target

Payload output buffer depth

Choose the maximum number of possible outstanding output data sets after
triggering algorithm execution.

Settings
Default: 1

Dependencies
Enable payload buffering enables this parameter.

Command-Line Information

Parameter: tlmgPayloadOutBufferDepth
Type: int

Value:

Default: 1

See Also
Buffering

12-12

TLM Generation Pane

Enable quantum for loosely-timed simulation

Quantum allows loosely-timed simulation.

Settings
Default: Off

¥ On
Enable quantum for loosely-timed simulation. Allows you to specify
the duration of the time quantum allocated to the generated TLM
component in your system simulation.

I ofr

Do not enable quantum

Dependencies
This parameter enables Quantum for loosely-timed components (ns).

Command-Line Information

Parameter: tlmgQuantumOnOff
Type: string

Value: 'on' | 'off'

Default: 'off"

See Also
The Quantum

12-13

1 2 Configuration Parameters for TLM Generator Target

Quantum for loosely-timed components (ns)

Specify the time at which point temporally-decoupled components are forced
to synchronize.

Settings
Default: 1000

Dependencies
Enable quantum for loosely-timed simulation enables this parameter.

Command-Line Information

Parameter: tlmgQuantumTime
Type: int

Value:

Default: 1000

See Also
The Quantum

12-14

TLM Generation Pane

Algorithm step function (ns)

Specify the time in nanoseconds for modeling the algorithm execution time in
the TLM environment.

Settings
Default: 100

Command-Line Information

Parameter: tlmgAlgorithmProcessingTime
Type: int

Value:

Default: 100

See Also
TLM Component Timing

12-15

1 2 Configuration Parameters for TLM Generator Target

Single write transfer or the first write transfer in a
burst transaction (ns)

Specify the time in nanoseconds for the TLM component to execute a single
write transfer or the first write transfer in a burst transaction.

Settings
Default: 10

Command-Line Information

Parameter: tlmgFirstWriteTime
Type: int

Value:

Default: 10

See Also
TLM Component Timing

12-16

TLM Generation Pane

Subsequent write transfers in a burst transaction (ns)

Specify the time in nanoseconds for the TLM component to execute a
subsequent write transfer in a burst transaction.

Settings
Default: 10

Command-Line Information

Parameter: tlmgSubsequentWritesInBurstTime
Type: int

Value:

Default: 10

See Also
TLM Component Timing

12-17

1 2 Configuration Parameters for TLM Generator Target

Single read transaction or the first read transfer in
a burst transaction (ns)

Specify the time in nanoseconds for the TLM component to execute a single
read transaction or the first read transaction in a burst transaction.

Settings
Default: 10

Command-Line Information

Parameter: tlmgFirstReadTime
Type: int

Value:

Default: 10

See Also
TLM Component Timing

12-18

TLM Generation Pane

Subsequent read transfers in a burst transaction (in
ns)

Specify the time in nanoseconds for the TLM component to execute a
subsequent read transfer in a burst transaction.

Settings
Default: 10

Command-Line Information

Parameter: tlmgSubsequentReadsInBurstTime
Type: int

Value:

Default: 10

See Also
TLM Component Timing

12-19

1 2 Configuration Parameters for TLM Generator Target

12-20

User-tag for TLM component names

Add additional text to your TLM component class name identifier, the input
and output data structures, and the directory to place the generated code.

Settings
No Default

Command-Line Information

Parameter: tlmgUserTagForNaming
Type: string

Value:

Default:

See Also
TLM Component Naming and Packaging

TLM Testbench Pane

TLM Testbench Pane

#, Configuration Parameters: timgdemo_intro/Configuration (Active) il
Select: —Testbench Generation 1=
+~Solver
v G te testbench.
Data Import/Expart ¥ General sthen
- Optimization I™ Generate verbose messages during testhench execution
& Dl:agnnshcs —Run-time timing mode
i5ample Time
i Data Validity & yiith timing
?--Type Conversion
-Connectivity £ Without timing
i Compatibility
i~-Madel Referencing r—Input buffer triggering mode
i--Saving
=
+Hardware Implementation CRIELE
Model Referendng i Manual
El-Simulation Target
Symbols —Output buffer triggering mode
H -Custom Code
E}-Real Time Workshop i Automatic
5-'Repurt ~
Manual
-Comments
-Symbols
-Custom Code Verify TLM Component
Debug fo
Interface
‘TLM Generation
i~TLM Testbench
i TLM Compilation
|
J- oK I Cancel Help Apply |

In this section...
“TLM Component Testbench Pane Overview” on page 12-22

“Generate testbench” on page 12-23
“Generate verbose messages during testbench execution” on page 12-24
“Run-time timing mode” on page 12-25

“Input buffer triggering mode” on page 12-26

“Output buffer triggering mode” on page 12-27

12-21

1 2 Configuration Parameters for TLM Generator Target

TLM Component Testbench Pane Overview

Specify options for the generation and runtime behavior of a standalone
SystemC/TLM component test bench.

12-22

TLM Testbench Pane

Generate testbench

Generate a standalone SystemC test bench in order to verify the generated
TLM component using the same input stimulus as used in Simulink.

Settings
Default: On

¥ On

Generate test bench for TLM component

™ ofr

Do not generate test bench

Dependencies
This parameter enables all other parameters on this pane.

Command-Line Information

Parameter: tlmgGenerateTestbench
Type: string

Value: 'on' | 'off'
Default: 'on'
See Also

Creating and Applying a Test Bench for the Generated TLM Component

12-23

1 2 Configuration Parameters for TLM Generator Target

12-24

Generate verbose messages during testbench
execution

Generate verbose messages during test bench execution.

Settings
Default: Off

IFOn

Test bench generates verbose runtime messages

I off

Test bench does not generate verbose messages

Dependencies
Generate testbench enables this parameter.

Command-Line Information

Parameter: tlmgVerboseTbMessagesOnOff
Type: string

Value: 'on' | 'off!'

Default: 'off"

See Also
Verbose Messaging

TLM Testbench Pane

Run-time timing mode

Specify the timing mode to be used by the generated test bench and TLM
component.

Settings
Default: With timing

With timing: The target annotates TLM component transactions with
delays and the initiator will honor them. When a quantum keeper is not
used (see “Enable quantum for loosely-timed simulation” on page 12-13),
the initiator synchronizes immediately following the transaction execution.
When a quantum keeper is used, the initiator utilizes temporal decoupling
and does not synchronize to the annotated delays until the quantum is
reached.

Without timing: The target does not annotate TLM component
transaction with any delays. The initiator and target only perform
synchronization using zero-time wait calls.

Dependencies
Generate testbench enables this parameter.

Command-Line Information

Parameter: t1mgRuntimeTimingMode
Type: string

Value: 'With timing' | 'Without timing'
Default: 'With timing'

See Also
Run-Time Timing Mode

12-25

1 2 Configuration Parameters for TLM Generator Target

Input buffer triggering mode

Specify when data is moved from the input register to the execution buffer. In
your TLM environment, this specification is done via a runtime configuration
command and can be changed dynamically throughout simulation.

Settings
Default: Automatic

® Automatic: The TLM component automatically moves input data sets
from the input registers to the input buffer.

® Manual: The initiator must explicitly write a command to the command
and status register in order to move the input data set from the register to
the input buffer.

Dependencies
Generate testbench enables this parameter.

Command-Line Information

Parameter: tlmgInputBufferTriggerMode
Type: string

Value: 'Automatic' | 'Manual'

Default: 'Automatic'

See Also
Input and Output Buffer Triggering Modes

12-26

TLM Testbench Pane

Output buffer triggering mode

Specify when data is moved from the results buffer to the output register. In
your TLM environment, this specification is done via a runtime configuration
command and can be changed dynamically throughout simulation.

Settings
Default: Automatic

* Automatic: The TLM component automatically moves output data sets
from the output buffer to the output registers.

® Manual: The initiator must explicitly write a command to the command
and status register in order to move the output data set from the output
buffer to the output registers.

Dependencies
Generate testbench enables this parameter.

Command-Line Information

Parameter: tlmgOutputBufferTriggerMode
Type: string

Value: 'Automatic' | 'Manual'

Default: 'Automatic'’

See Also
Input and Output Buffer Triggering Modes

12-27

1 2 Configuration Parameters for TLM Generator Target

TLM Compilation Pane

12-28

3{'&; Configuration Parameters: model/Configuration (Active)

Select: Compiler Options

- Salver
SystemC include path: | ${S¥STEMC_INC_PATH
Data Trpor Expart ystemC ncluds path | §(_INC_PATH)
- Optimization SystemC library path: [$(SYSTEMC_LIE_PATH)
[=)-Diagnostics
-~ 5ampls Time TLMindude path; [$(TLM_INC_PATH)
Daka Yalidity

3 I™ Compile with debug flags
- Type Canversion

Connectivity
-~ Compatibility
Madel Referencing
= Saving
Hardware Implementation
- Madel Referencing
[-Simulation Target
i beSymbols
H Custom Code
[=)-Real-Time Warkshop
Repart
- Comments
Symbols
-~ Custom Code
Debug
- Interface
- TLM Generation
-~ TLM Testbench

atinn

[=1-HOL Coder
-~ Global Settings
- Test Bench
~~EDA Tool Scripts

J oK I

Cancel

Help

Apply

In this section...

“TLM Component Compilation Overview” on page 12-29
“SystemC include path” on page 12-30

“SystemC library path” on page 12-31

“TLM include path” on page 12-32

“Compile with debug flags” on page 12-34

TLM Compilation Pane

TLM Component Compilation Overview
Specify generated TLM component compilation options.

12-29

1 2 Configuration Parameters for TLM Generator Target

12-30

SystemC include path

Specify the SystemC include path. This string is written directly into the
generated makefiles. The default is chosen such that if your define the
environment variable you should be able to update your System C/TLM
installation without having to update your Simulink models.

Settings
Default: $(SYSTEMC_INC_PATH)

Command-Line Information

Parameter: tlmgSystemCIncludePath
Type: string

Value:

Default: '$(SYSTEMC_INC_PATH)'

TLM Component Compiler Options

TLM Compilation Pane

SystemC library path

Specify the location of the library directory in your SystemC installation.
This string is written directly into the generated makefiles. The default is
chosen such that if your define the environment variable you should be able
to update your SystemC/TLM installation without having to update your
Simulink models.

Settings
Default: $(SYSTEMC_LIB_PATH)

Command-Line Information

Parameter: tlmgSystemCLibPath
Type: string

Value:

Default: '$(SYSTEMC_LIB_PATH)'

See Also
TLM Component Compiler Options

12-31

1 2 Configuration Parameters for TLM Generator Target

12-32

TLM include path

Specify the location of the TLM include directory in your TLM installation.
This string is written directly into the generated makefiles. The default is
chosen such that if your define the environment variable you should be able
to update your SystemC/TLM installation without having to update your
Simulink models.

Settings
Default: $(TLM_INC_PATH)

Command-Line Information

Parameter: tlmgTLMIncludePath
Type: string

Value:

Default: '$(TLM_INC_PATH)'

See Also
TLM Component Compiler Options

1 2 Configuration Parameters for TLM Generator Target

12-33

1 2 Configuration Parameters for TLM Generator Target

Compile with debug flags

Add flags to the TLM component compilation to preserve symbols for source
code debug.

Settings
Default: Off

¥ On
Add flags to TLM component compilation

I off
Do not add flags

Command-Line Information

Parameter: tlmgCompileWithDebugFlags
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also
TLM Component Compiler Options

12-34

Creating and Managing Xilinx
Projects for FPGA Development

e Chapter 13, “FPGA Project Generation Overview”
e Chapter 14, “FPGA Project Development”
e Chapter 15, “FPGA Hardware-in-the-Loop (HIL)”

FPGA Project Generation
Overview

1 3 FPGA Project Generation Overview

13-2

EDA Simulator Link FPGA Project Generation Overview

In this section...

“Introduction to EDA Simulator Link FPGA Project Generation” on page
13-2

“Generated Project Files” on page 13-3

“Clock Modules” on page 13-4

“User Constraint Files (UCF) for Multicycle Paths” on page 13-5
“FPGA Hardware-in-the-Loop (HIL)” on page 13-7

“For More Information” on page 13-8

Introduction to EDA Simulator Link FPGA Project
Generation

EDA Simulator Link contains a Xilinx® FPGA (field programmable gate
array) adaptor that enhances the workflow for designs targeting Xilinx
devices with Simulink® HDL Coder™. This adaptor allows you to create and
manage Xilinx ISE projects. With the adaptor capabilities, you can:

Create a Xilinx ISE project with generated HDL files from Simulink HDL
Coder, and associate the project with the Simulink model for subsequent
update (see “Create New FPGA Project” on page 14-2).

Associate an existing ISE project with a Simulink model instead of creating
a new project (see “Add Generated Files to Existing FPGA Project” on page
14-11).

Update the generated files in an associated ISE project. EDA Simulator
Link automatically adds newly generated files to the project and removes
outdated files (see “Update Generated Files for Associated FPGA Project”
on page 14-17).

Optionally obtain current ISE project settings (target device and user
source files), and update those settings to model (see “Add Generated Files
to Existing FPGA Project” on page 14-11 or “Update Generated Files for
Associated FPGA Project” on page 14-17).

EDA Simulator Link™ FPGA Project Generation Overview

® Request automatic generation of a Xilinx Digital Clock Manager (DCM) for
HDL code generated by Simulink HDL Coder for implementation in FPGA
devices (see “Clock Modules” on page 13-4).

EDA Simulator Link also provides support for FPGA hardware-in-the-loop
(HIL) and Simulink simulation with certain supported FPGA boards. (See the
EDA Simulator Link product page). The software generates HDL code from a
Simulink model. (See Chapter 15, “FPGA Hardware-in-the-Loop (HIL)”.

User scenarios include:

¢ [terating between Simulink design and synthesis and implementation in
the Xilinx design environment to find an optimal architecture for algorithm
that meets project requirements.

® Implementing an algorithm in Simulink and designing other parts of the
FPGA logic separately; for example, integrating generated HDL with the
rest of the FPGA logic, and iterating as described in the previous scenario.

¢ Using the generated Tcl script to create a new ISE project or adding
generated files to an existing project.

¢ Performing FPGA hardware-in-the-loop (HIL) simulation.

About Xilinx ISE Support

All EDA Simulator Link FPGA Project Generation and FPGA HIL features
are tested with ISE version 11.4.

Generated Project Files

When you create a new project, associate an existing project, or update an
associated project, EDA Simulator Link generates certain files. These files
are:

¢ A Xilinx ISE project file

¢ Generated HDL code for the device under test (DUT)@f you selected
Always generate HDL or if you generated HDL directly using the HDL
Coder pane)

¢ Generated HDL for the clock module and a top-level wrapper containing
the clock module and the DUT (if you selected Generate clock module)

13-3

http://www.mathworks.com/products/eda-simulator/requirements.html

1 3 FPGA Project Generation Overview

13-4

® The User Constraint File (UCF) for the clock module (if you selected
Generate clock module)

e The UCF for multicycle paths in the DUT

® Bitstream for the FPGA and an executable for the DSP (if you selected FGPA
hardware-in-the-1loop workflow)

Creating a New Project

When you select New ISE project in the Configuration Parameters EDA
Link pane, EDA Simulator Link creates a new Xilinx ISE project (*.xise)
using the FPGA adaptor. This project resides in the folder that you specified
in the FPGA project settings section. Files are added to the project as
pointers (the files are not copied).

Adding New Files to an Existing Project

To add new files to an existing project, you specify the existing project and
EDA Simulator Link software adds pointers to these new files directly to the
existing project file (files are not copied).

Updating an Existing Project

If EDA Simulator Link software has already associated the Simulink model
with an existing project file , the software retrieves the project automatically
when you click Update FPGA project in the Configuration Parameters
EDA Link pane.

When you choose to update a project, pointers to new generated files are
added to the project file and pointers to files no longer generated are removed.

Clock Modules

The process of FPGA project generation includes the option to generate HDL
code for a clock module. This code contains a digital clock manager (DCM)
and other related logic that improves FPGA performance. In addition, the
DCM clock module simplifies the HDL code generation design process for
Xilinx targets.

The ISE project creation/update workflow and Tecl script generation workflow
offer you the option of driving generated HDL design with a single-output,

EDA Simulator Link™ FPGA Project Generation Overview

DCM clock module. EDA Simulator Link software automatically adds the
clock module, a top-level HDL wrapper, and the necessary UCF constraints
to the generated ISE project.

The following limitations apply:

® Restricted to single DCM clock output
e VHDL only

e DUT I/O ports must be scalar and of word type (Boolean, fixed-point, or
integer)

DCM Design Rules
EDA Simulator Link checks the following:

® Whether a selected target device is supported for (DCM) clock module
generation
® Whether the specified input and system clock period is supported for the

selected target device

Currently supported target devices can be found on the EDA Simulator Link
product page.

Other design rules include making sure that the DUT adheres to the following:
¢ Select only VHDL code as target language on HDL Coder Config Params
pane (Verilog not supported)

e Make sure design contains clocked logic (pure combinatorial DUT is not
supported)

e Make sure design does not contain any double, single, or vector data types
at the DUT I/0O port

® Checks whether the clock module feature is supported for your ISE version

User Constraint Files (UCF) for Multicycle Paths

The process of FPGA project generation also generates UCF constraints for
multicycle paths for multirate designs. EDA Simulator Link does not include
the generated UCF in the generated FPGA project but you can find the file in

13-5

http://www.mathworks.com/products/eda-simulator/
http://www.mathworks.com/products/eda-simulator/

1 3 FPGA Project Generation Overview

the HDL Coder target directory with other generated files. The generated file
name follows this format: DUTname . ucf

The UCF file contains multicycle path constraints that are generated
according to the following criteria:

® Project generation includes generating the UCF file only when you
have selected the Simulink HDL Coder Generate multicycle path
information option (on the EDA Tool Scripts pane).

e When the HDL DUT is single rate, the generated UCF file does not contain
any multicycle path constraints.

¢ EDA Simulator Link places the generated UCF file in the target folder
defined in the Simulink HDL Coder Configuration Parameters.

e EDA Simulator Link does not automatically add the generated UCF file
the generated/updated ISE project.

Using the Generated UCF File

e [f suitable, add the UCF file to the generated/associated ISE project.

The generated top-level HDL must be the FPGA top level in order to use
the UCF file without manual changes.

® Remove the comment for the example clock period constraint, if the FPGA
clock period is not defined elsewhere.

e Match the clock period definition to the FPGA clock.

® You must manually remove or comment out any constraint that may cause
an error if all registers in a time group are optimized away.

Example
The following multicycle path in ‘DUTname_constraints.txt’:

FROM : Subsystem.u_DE.regout(7:0); TO : Subsystem.u_DE.Downsample out1(7
PATH_MULT : 10; RELATIVE_CLK : source, Subsystem.clk;

Is translated to the following UCF constraints:

TIMEGRP "MC1_SRC" = FFS("u_DE/regout<*>");

13-6

EDA Simulator Link™ FPGA Project Generation Overview

TIMEGRP "MC1_END" = FFS("u_DE/Downsample_outi<*>");
TIMESPEC TS_MC1 = FROM "MC1_SRC" TO "MC1_END" TS_clk * 10;

FPGA Hardware-in-the-Loop (HIL)

EDA Simulator Link supports running the generated HDL code on an FPGA
board using Simulink as the test bench. This capability allows you to verify
the functionality of an algorithm in real hardware (FPGA).

The project generator provides: ,

® Synthesis
¢ Logical mapping
PAR (place-and-route)

Bitstream generation specifically designed for a particular board

Automatic generation of all the necessary files, including:
= FPGA bitstream
= DSP executable

= Modified user model with communications channel (to communicate
with the board)

Note The FPGA HIL workflow automatically generates an FPGA project.
You may specify the name and location of the generated project using the
configuration parameters for FPGA workflow.

When you specify the FPGA hardware-in-the-loop workflow, EDA
Simulator Link creates a secondary Simulink model that interfaces with the
input/output ports of the DUT subsytem. This secondary shell subsystem
packs the data and then sends the data down to the FPGA targets using
TCP/TP communication. The secondary shell also receives the data back and
writes it to the output ports of the DUT subsystem in Simulink.

For full instructions in how to implement FGPA HIL, see Chapter 15, “FPGA
Hardware-in-the-Loop (HIL)”.

13-7

1 3 FPGA Project Generation Overview

For More Information

The following information can help you get started creating a new ISE project
and using the workflows described in the previous sections.

® “Quick Start” on page 13-8

¢ “Workflows Described in This Documentation” on page 13-8

Quick Start

To quickly generate a new ISE project with default settings for an existing
model:

1 Set up MATLAB to use Xilinx ISE with the following MATLAB command:
>> setupxilinxtools

2 Load existing model into Simulink.

3 In the model window, select a subsystem to generate HDL for.

4 In MATLAB, execute the following command:

>>makefpgaproject(gch)

Workflows Described in This Documentation

“Create New FPGA Project” on page 14-2

® “Add Generated Files to Existing FPGA Project” on page 14-11

e “Update Generated Files for Associated FPGA Project” on page 14-17
* “Remove Project Association” on page 14-22

® “Generate Tcl Script for Project Generation” on page 14-23

¢ Chapter 15, “FPGA Hardware-in-the-Loop (HIL)”

13-8

FPGA Project Development

¢ “Create New FPGA Project” on page 14-2

¢ “Add Generated Files to Existing FPGA Project” on page 14-11

e “Update Generated Files for Associated FPGA Project” on page 14-17
¢ “Remove Project Association” on page 14-22

® “Generate Tcl Script for Project Generation” on page 14-23

14 rrca Project Development

14-2

Create New FPGA Project

In this section...
“Workflow for Creating a New FPGA Project” on page 14-2

“Create New or Open Existing Model” on page 14-3
“Set Up MATLAB to Use Xilinx ISE (New Project)” on page 14-3

“Set Up FPGA Project Configuration Parameters for New Project” on page
14-3

“Set Project Generation Settings with EDA Link Configuration Parameters”
on page 14-3

“Generate FPGA Project” on page 14-9

Workflow for Creating a New FPGA Project

The following workflow diagrams shows the tasks you perform when creating
a new FPGA project for use with Xilinx that contains generated HDL code
from a Simulink model of the DUT.

The following steps describe these workflow tasks:

1 Create a new model or open an existing model.

2 Set up MATLAB to use Xilinx ISE.

3 Activate EDA Link GUI for FPGA project generation.

4 Use the Simulink Configuration Parameters EDA Link configuration panel
to set project generation settings.

Note You must activate the GUI first, or the EDA Link FPGA Workflow
configuration pane does not appear. See step 3.

5 Generate FPGA project files.

Create New FPGA Project

When you have finished creating the project, you can open the project from
the EDA Link FPGA Workflow pane by clicking Open Project in ISE. This
option launches Xilinx ISE Project Navigator and opens the current project
in ISE.

Create New or Open Existing Model

Using Simulink, create a new model or open an existing model. As a best
practice when you create FPGA projects, specify only the top-level subsystem
for code generation. This practice avoids using some top-level model
components that don’t support HDL code generation or use data types that
are not suitable for HDL code generation or FPGA implementation.

Set Up MATLAB to Use Xilinx ISE (New Project)
Set up MATLAB to use Xilinx ISE with the following MATLAB command:

>> setupxilinxtools
Set Up FPGA Project Configuration Parameters for

New Project

Attach the EDA Link GUI pane to an existing or new model with the following
MATLAB command:

> fpgamodelsetup(gcs)
You can replace gcs with the name of any valid model.

This command sets parameters suitable for the FPGA workflow. See
fpgamodelsetup.

Set Project Generation Settings with EDA Link
Configuration Parameters

Before you can generate a project, you must make decisions about: ,

® Where you want the project to reside
® Whether to generate HDL code

e What additional source files are needed

14-3

14 rrca Project Development

e Whether additional process property settings must be specified

e Whether you want to add a clock module

You specify these options in the Simulink HDL Coder pane and in the EDA
Link FPGA Workflow pane.

See the following topics for further details on setting parameters:

® “Settings in the Simulink® HDL Coder Pane” on page 14-4
® “Settings in the EDA Link FPGA Workflow Pane” on page 14-6

When all options have been specified, go on to “Generate FPGA Project” on
page 14-9.

Settings in the Simulink HDL Coder Pane

Open or navigate to the Configuration Parameters HDL Coder pane, as
shown in the following figure.

14-4

Create New FPGA Project

#, Configuration Parameters: model/Configuration (Active)

[» x

Select: —Code generation contral file
+-Solver
-~ Data Import/Export
- Optimization oo,
[=-Diagnostics —I
-Sample Time

File name: I Load...

-Data Valicity [rarget

“Type Conversion Generate HDL for: Imnde\ |
-Connectivity

~Compatibility Language: |VHDL LI

“Model Referencing

‘.-5aving Folder: |hlsrc Browse. ..

+~Hardware Implementation

- Model Referencing —Code generation output
El-Simulation Target
H ¢ ' Generate HOL code
-Symbals
i Custom Code " Display generated model only
E1-Real Time Workshop

i-Repart " Generate HOL code and display generated model

i Comments
Symbals —Traceability
-Custom Code
Debug

i~ Interface ¥ Indude requirements in block comments E
i-TLM Generation

TLM Tasﬂm.anch Restore Factory Defaults Run Compatibility Checker |
TLM Compilation

I™ Generate traceability report

oder Generate |
i Global Settings
+Test Bench

i-EDA Tool Scripts

‘)- oK I Cancel | Help | Apply |

Use the options in this pane to specify the folder for the generated code,
the HDL language, and the subsystem to generate HDL for. If you need
assistance with any of the options in the Simulink HDL Coder pane, see the
Simulink HDL Coder documentation.

Specify Optional UCF for Multicycle Path. Open the EDA Tool Scripts
subpane from the HDL Coder pane, as shown in the following figure.

14-5

14 rrca Project Development

14-6

#, Configuration Parameters: model/Configuration (Active)

[» x

Select: V¥ Generate EDA seripts

+-Solver

+Data Import/Export

= Optimization

[=-Diagnostics
-Sample Time vlib %sin

-Data Validity

“Type Conversion

-Connectivity

~Compatibility Compile command for VHDL:

{""Model Referencing

F-Saving

+~Hardware Implementation

+Model Referencing

El-Simulation Target

-Symbols

H Custom Code

[1-Real Time Workshop

Report

i Comments

Symbols Compile termination:

-Custom Code

Debug

i~ Interface e

i~TLM Generation

+TLM Testbench

#--TLM Compilation

[E-HDL Coder

Global Settings

+Test Bench

i--EDA Tool Scripts

Compilation script — Compile file postfix: I;Umpile.du
Simulation script
Synthesis script | Compile initizlization:

veom %s Yes'n

Compile command for Verilog:

vlog %es Yes'n

[v Generate multicycle path information

‘)- oK I Cancel | Help | Apply |

To generate a UCF for multicycle paths, select Generate multicycle path
information.

Settings in the EDA Link FPGA Workflow Pane

The following figure shows the EDA Link FPGA Workflow Pane and all the
available workflow options.

Create New FPGA Project

#, Configuration Parameters: sfir_fixed /Configuration (Active) x|
Select: | FPGA Workflow for Xilink ISE Design Suite
- Solver ~FPGA workflow options
+Data Import/Export
-~ Optimization Workflow: IPrUject generation

[=]-Diagnostics

i--Sampie Time Qutput: |ISE project

-Data Validi
ity FPGA project association

&l
[l
~Type Conversion
“Connectivity Associate: INEW 15E project =l
-Compatibility
-Model Referencing Specify new project settings below.
*-5aving . .
+Hardware Implementation TR SR
'~ Model Referencing MName: Iunhﬁedjrn}
E-Simulation Target
-Symbols Folder: |iseproject Browse...
-Custom Code)
£-Real Time Workshop Target Device:
i~Repart Family: I\u'\rtex4 j Device: Ixc%stS LI Speed: I-ID LI Package: IHGGS j

- Comments
Symbals
-Custom Code | Browse...
i-Debug
- Interface
[E-HDL Coder
--Global Settings Process property settings:
Test Bench
--EDA Tool Scripts
EDA Link

Additional Source Files:

Propertv name | Propertv value |Process | e

Delete

Down

Ly

—FPGA dock options

™ Generate dock module

FPGA input dock period (ns): | 10 FPGA system dock period {ns): | 10

I Always generate HOL

Generate FPGA Project |

=

“) oK I Cancel | Help Appl

To set project generation settings, perform the following steps:

1 Under FPGA workflow options:
a For Workflow, select Project Generation

a For Output, select ISE Project
2 Under Associated FPGA Project, Associate, select New ISE Project

3 Under FPGA Project Settings:

a For Name,enter desired project name. The default is untitled proj.

14-7

14 rrca Project Development

14-8

For Folder, enter the folder name where the project files are to be
placed. The default is iseproject under the current working folder.

For Family, Device, Speed, and Package, select the target FPGA
device for the new project.

For Additional Source files, enter files you want included in the ISE
project. You should only include file types supported by ISE.

You may add files manually into the edit box or by using the browser. If
the file does not exist, the create project workflow errors out.

Notes About Specifying Additional Source Files

e [f you are adding the files manually, separate each file name
with a carriage return (using the browser adds this hard return
automatically).

¢ After you fill out the edit box using Browse, the GUI changes cannot
be undone using Cancel.

For Process property settings, enter name, value, and name of
process. If you have a space in any text entered for Property value, you
must enclose that text with quotation marks (" ").

The process property settings use the Xilinx Tcl command syntax. Refer
to Xilinx ISE software manuals for valid property settings. Search for
Tel reference in the command line tool user guide.

After making changes in the process settings table, you must click either
Apply or Cancel before clicking Generate FPGA Project; otherwise
the settings do not take effect.

Note EDA Simulator Link software does not validate the text entered
for the process properties—it is your responsibility to review your entries
and make sure they are correct.

The following figure shows an example of some process property settings.

Create New FPGA Project

Process property setkings:

Property name Property value Process New
Optimization Goal Area Synthesize - XST
Macro Search Path "C:JFPGA Project/IP{FFT" Translate Delete |

p

Down

I

4 Select Generate clock module in the FPGA clock options section if you
want to generate an optional clock module. After selecting Generate clock
module, you may edit the fields for FPGA input clock period (ns) and
FPGA system clock period (ns).

5 Select Always generate HDL if you want EDA Simulator Link software
to always generate code from the Simulink model before generating the
FPGA project. If you do not, then deselect this option.

Note If you do not select this option, you can use the Simulink HDL Coder
pane to generate code for the model.

Generate FPGA Project

You can generate an FPGA project using the GUI or the command line.

Generate FPGA Project via the GUI

Click Generate FPGA Project. You can see status messages in the MATLAB
command window. Respond to warning messages as prompted. For example,
if you have an existing project with the same name as the new project, the
software prompts you to overwrite the existing project. (The default is yes).

Note If there is an existing project you want to overwrite, the best practice is
to manually delete the project folder before generating the project.

Alternatively, you can create an FPGA project using the command line. See
“Generate FPGA Project via Command Line” on page 14-10.

14-9

14 rrca Project Development

14-10

You can find the generated project files in the project folder you specified in
the Configuration Parameters FPGA Workflow pane. Other generated files
are located in the target folder you specified in the HDL Coder pane.

Generate FPGA Project via Command Line

To generate the FPGA project in the MATLAB command window, enter the
following command at the MATLAB prompt:

>>makefpgaproject(subsystem);

Where subsystem is the name of the model subsystem you want included in
the project. See the function reference page for makefpgaproject.

EDA Simulator Link software generates the project with either of the
following types of settings:

® Default settings if the EDA Link GUI pane configuration parameters are
not attached

e Settings currently specified in the Configuration Parameters dialog box

Add Generated Files to Existing FPGA Project

Add Generated Files to Existing FPGA Project

In this section...

“Workflow for Adding Generated Files with Existing FPGA Project” on
page 14-11

“Create New or Open Existing Model for Adding to Project” on page 14-13
“Set Up MATLAB to Use Xilinx ISE (Add to Project)” on page 14-13

“Set Up FPGA Workflow Configuration Parameters (Add to Project)” on
page 14-13

“Open EDA Link FPGA Workflow Pane (Add to Project)” on page 14-14

“Specify FPGA Project Settings with EDA Link Configuration Parameters”
on page 14-15

“Add Generated Files to Project with Associate Project” on page 14-15

Workflow for Adding Generated Files with Existing
FPGA Project

The following workflow diagrams shows the tasks you perform when adding a
new or existing Simulink model to an existing FPGA project. The Xilinx ISE
project must already exist.

14-11

14 rrca Project Development

Create new model or
open existing model

A 4
Set up MATLAB to

use Xilinx ISE

4
Activate EDA Link
GUI for FPGA project

generation

A 4
Open EDA Link FPGA
Workflow Pane

h

Set project
generation settings
with Simulink
Configuration

Parameters

Y

Associate Simulink
model with FPGA
project

Done

The following steps describe these workflow tasks:

1 Open model or create a new one.

14-12

Add Generated Files to Existing FPGA Project

2 Set up MATLAB to use Xilinx ISE.
3 Set up FPGA workflow configuration parameters pane.
4 Open EDA Link FPGA Workflow pane.

5 Use EDA Link Configuration Parameters to specify project generation
settings.

6 Add files to FPGA Project.

When you have finished updating the project, you can open the project from
the EDA Link FPGA Workflow pane by clicking Open in ISE. This option
launches Xilinx ISE Project Navigator and opens the current project in ISE.

Create New or Open Existing Model for Adding to
Project

Using Simulink, create a new model or open an existing model that you want
to associate with an existing Xilinx ISE project.

Set Up MATLAB to Use Xilinx ISE (Add to Project)
Set up MATLAB to use Xilinx ISE with the following MATLAB command:

>> setupxilinxtools

Set Up FPGA Workflow Configuration Parameters
(Add to Project)

Attach the EDA Link GUI pane to an existing/new model with the following
MATLAB command:

> fpgamodelsetup(gcs)

You can replace gcs with the name of any valid model.

This command sets parameters suitable for the FPGA workflow. See
fpgamodelsetup.

14-13

14 rrca Project Development

Open EDA Link FPGA Workflow Pane (Add to Project)

1 In the model window, select Simulation > Configuration Parameters.
2 In the left-hand navigation pane, click on EDA Link.

3 In the Associate field, select Existing ISE Project.

The EDA Link FPGA Workflow panel appears as shown in the following
figure.

#; Configuration Parameters: untitled/Configuration (Active) x|

Hardware Implementation
Model Referencing

{-Comments

-Debug
beInterface
[2I-HDL Coder
i-Global Settings

Select: FPGA Workflow for Xilinx ISE Design Suite

Solver —FPGA workflow opti

Data Import/Export

Optimization Workflow: [Project generation =

& D'?g;':;';: — OQutput: [1SE praject 2|

*Data Validity))
Type Conversion —FPGA project association
i-Connectivity Cereois =
-~ Compathbility
i-Model Referencing Project location: Browse... |
t.-Saving

lation Target Target Device:
Symbols Family: [Virtexs =] Deviee: [icvsxas | speed: [0 | Package: [F68 |
Custom Code Adeibonal Source e

[=-RealTime Workshop itional Source Files:

L Comme Browse...,

—FPGA project settings

~FPGA dock options

™ Generate dock module

i-Test Bench FPGA input:dodk period|(ns): [10 FPGA system dock period (is): |10
-EDA Tool Scripts
-~EDA Link

I Always generate HDL

I Get current settings from ISE project

Associate FPGA Project

oK I Cancel Help Apply

Add Generated Files to Existing FPGA Project

Specify FPGA Project Settings with EDA Link
Configuration Parameters

Enter path/location of the existing FPGA project that you want to associate
with the generated code from the current Simulink model. Then, specify these
additional project settings:

® Specify clock module
® Generate HDL code

® Get current settings from ISE project

Specify Clock Module (Add to Project)

Select Generate clock module in the FPGA clock options section if you

want to generate an optional clock module. After selecting Generate clock
module, you may edit the fields for FPGA input clock period (ns) and

FPGA system clock period (ns).

Generate HDL Code for Simulink Model (Add to Project)

Select the option Always generate HDL to generate HDL code before project
creation. Use the GUI parameters in the HDL Coder pane to select the
top-level subsystem and language for which to generate code.

Alternatively, you can generate HDL code directly from the HDL Coder pane.

Get Current Settings from ISE Project (Add to Project)

You are not required to update target device and additional source file
settings; this is an optional action.

If you want to update the target device and additional source file settings in
the model with the current settings of the existing ISE project, select Get
current settings from ISE Project.

Add Generated Files to Project with Associate Project

Click Associate FPGA Project. You can see status messages in the
MATLAB command window. Respond to warning messages as prompted.

14-15

14 rrca Project Development

This action may update the configuration parameters for the current model.
Save model to save new configuration parameters.

You can then see the added generated files in the ISE project. Generated files
appear in the folder specified in the HDL Coder pane.

14-16

Update Generated Files for Associated FPGA Project

Update Generated Files for Associated FPGA Project

In this section...
“Workflow for Updating Generated Files” on page 14-17
“Open EDA Link FPGA Workflow Pane” on page 14-19

“Specify FPGA Project Settings with EDA Link Configuration Parameters”
on page 14-20

“Update FPGA Project” on page 14-20

Workflow for Updating Generated Files

The following workflow diagrams shows the tasks you perform when updating
an existing Simulink model already associated with an FPGA project.

14-17

14 rrca Project Development

Update model

4
Open EDA Link FPGA
Workflow Pane

L 4

Set project
generation settings
with Simulink

Configuration

Parameters

¥

Update FPGA project

The following steps describe these workflow tasks:
1 Update model in Simulink.

2 Open Configuration Parameters... EDA Link FPGA Workflow pane.

3 Specify project settings with EDA Simulator Link configuration
parameters.

4 Update FPGA Project

14-18

Update Generated Files for Associated FPGA Project

After updating the project, you can open the project from the EDA Link FPGA
Workflow pane by clicking Open in ISE. This option launches Xilinx ISE
Project Navigator and opens the current project in ISE.

Open EDA Link FPGA Workflow Pane

1 In the model window, select Simulation > Configuration Parameters.

2 In the left-hand navigation pane, click on EDA Link.

The EDA Link FPGA Workflow panel appears as shown in the following
figure.

¥y Configuration Parameters: sfir_ficed /Configuration (Active) x|
Select: FPGA Workfiow for Xiinx 1SE Desion Suite =
Sotver FPGA workflow opbions -
Data Import/Export
Opbmizaton Warkflow: [Project generabon =]
—-Disgnostics . -
. s Output: [ISE projest =]
Dats vValdity
o — ~FPGA projact assaciation
E""‘:;f:_ Associated project: C:Work\Data ysepraject/uniitied_proj,xise Gpen 158 |
Model Referancing i I
Saving |
Hardware Implamentation ; =
Model Referancing FPGA prgject settngs
—-Simulation Target Terget Device:
Syl] oe w Speed: [0 o
Custom Code | I = Soeed: | Z| Padasge: | E
—-Real-Time Werkshap
-Rapart —
Comments
~Symibols
Custom Code
~Dabug .
Interface —FPGA dodk oplians -
=-HOL Coder
Global Sattngs ™ Generate dock modue =)
Test Bench FPGA input dock period (sl |10 FRGA system dock perod (ne): |10
h EDA Tool Sonpts 1
DAL I~ Always generate HOL
I™ Get current settings from ISE project
Update FPGA Project -
9 o l Cancel Help] o I

14-19

14 rrca Project Development

14-20

Specify FPGA Project Settings with EDA Link
Configuration Parameters

Enter path/location of the existing FPGA project that you want to associate
with the generated code from the current Simulink model. Then, specify these
additional project settings:

® Specify clock module
® Generate HDL code

® Get current settings from ISE project

Specify Clock Module (Update Project)

Select Generate clock module in the FPGA clock options section if you

want to generate an optional clock module. After selecting Generate clock
module, you may edit the fields for FPGA input clock period (ns) and

FPGA system clock period (ns).

Generate HDL Code for Simulink Model (Update Project)

Select the option Always generate HDL to generate HDL code before project
creation. Use the GUI parameters in the HDL Coder pane to select the
top-level subsystem and language for which to generate code.

Alternatively, you can generate HDL code directly from the HDL Coder pane.

Get Current Settings from ISE Project (Update Project)

You are not required to update target device and additional source file
settings; this is an optional action.

If you want to update the target device and additional source file settings in
the model with the current settings of the existing ISE project, select Get
current settings from ISE Project.

Update FPGA Project

Click Update FPGA Project. You can see status messages in the MATLAB
command window. Respond to warning messages as prompted.

Update Generated Files for Associated FPGA Project

This action updates the configuration parameters for the current model if
Get current settings from ISE Project is selected. Save model to save
new configuration parameters.

You can then see the latest generated files in the ISE project. Generated files
appear in the HDL Coder target folder.

14-21

14 rrca Project Development

Remove Project Association

14-22

In this section...

“Workflow for Removing Project Association” on page 14-22

“When to Remove Project Association” on page 14-22

Workflow for Removing Project Association

If you want to create another ISE project instead of updating the associated
project but still use the same model, you can remove the association between
the model and the project.

1 Open model.
2 Open the Configuration Parameters EDA Link FPGA Workflow panel.
3 Click Remove Project Association on the EDA Link panel.

When to Remove Project Association

The steps described remove the association between model and project. Then,
the FPGA workflow GUI returns to display parameters for a new ISE project.

You can remove the project association after a project is associated with a
model. A project can be associated with a model either through creating a new
project or adding generated files to an existing project.

Generate Tcl Script for Project Generation

Generate Tcl Script for Project Generation

In this section...

“When to Use Generated Tcl Scripts” on page 14-23

“Workflow for Tcl Script Generation” on page 14-23

When to Use Generated Tcl Scripts

There are a several reasons why you might want to generate Tcl scripts for
project generation:
® You can create the new ISE project on another computer.

® You want to hand off the generated files for someone else to create a new
ISE project on a different machine.

® You are designing part of a bigger FPGA system in Simulink. You want to
send the generated files to the person integrating the entire FPGA design
in their ISE project.

* You want someone else to quickly create the same ISE project (with the
same generated files and project settings, such as the target device) on
their machine, without having to archive the entire ISE project.

® You can use the Tcl script to add generated files to an existing project.

The Tecl script feature also does not require Xilinx ISE to be installed or on the
path (except when clock module is selected—that feature does require ISE).

Workflow for Tcl Script Generation

1 Select create new project or add generated files.

If you select New project, EDA Simulator Link software creates a Tcl script
with using new project settings. However, the software does not actually
create a project.

If you select Add generated files, EDA Simulator Link software writes
only the commands to add the generates files to the tcl script.

14-23

14 rrca Project Development

2 Select Generate Tecl Script.

EDA Simulator Link places the Tecl script in the Simulink HDL Coder target
folder in the following format: <DUTname>_fpgaworkflow.tcl.

14-24

FPGA
Hardware-in-the-Loop
(HIL)

¢ “Introduction to FPGA Hardware-in-the-Loop (HIL)” on page 15-2
o “Workflow for Generating FPGA HIL” on page 15-5

15 rrca Hardware-in-the-Loop (HIL)

Introduction to FPGA Hardware-in-the-Loop (HIL)

In this section...

“Overview of FPGA Hardware-in-the-Loop (HIL) Functionality” on page
15-2

“Simulink Emulation” on page 15-3
“Communication Channel” on page 15-4
“Downstream Workflow Automation” on page 15-4

“Design Considerations for FPGA HIL Project Generation” on page 15-4

Overview of FPGA Hardware-in-the-Loop (HIL)
Functionality

FPGA hardware-in-the-loop (HIL) provides the capability for testing RTL
code in real hardware for the automatically generated HDL code of a model
subsystem (via Simulink HDL Coder). FPGA HIL then performs the following
process:

e Synthesizes and loads the design into an FPGA

¢ Transmits data from Simulink® to the FPGA

® Receives data from the FPGA

* Exercises the design in a real environment

The project generator provides synthesis, logical mapping, PAR
(place-and-route), and bitstream generation, all specifically designed for
a particular board. FPGA HIL requires a project generated from the

FPGA Project Generator, as this project creates the bitstream files for the
communications channel and the DUT.

The following figure demonstrates how EDA Simulator Link communicates
between Simulink and the FPGA board using FPGA HIL simulation.

15-2

Introduction to FPGA Hardware-in-the-Lloop (HIL)

Simulink Model

T e
= [=

e e

X
i
L)

HH
{

Circuit Board

HIL Block Digital Signal :fgr:;Er;IcTaiﬂ
- ! Ethernet Processor " Chanmnel
‘M_’-l’t el
P e

Simulink Emulation

For the FPGA HIL workflow, you create a Simulink model with a DUT
subsystem. EDA Simulator Linksoftware supports only a single rate, one
input and one output DUT with input and output of 8 bits.

FPGA project generation adds the required and necessary logic to the DUT to
be able to communicate with Simulink. Usually, the size of the additional logic
is small enough to fit into the FPGA together with the DUT. To ensure fit, you
can run the synthesis process on the DUT first before generating an entire

Xilink Project for HIL. By doing so, you can determine if your DUT is too large.

EDA Simulator Link software creates a Xilinx project with the FPGA HIL
workflow option. However, you cannot add additional files or specify process
settings for the project. Instead, each time you generate a Xilinx project with
the FPGA HIL workflow option, EDA Simulator Link software creates a new
project.

15-3

15 rrca Hardware-in-the-Loop (HIL)

15-4

Communication Channel

EDA Simulator Link software provides the communication channel for
sending and receiving data between Simulink and the FPGA . This channel
uses the DSP and an Ethernet connection. EDA Simulator Link software
downloads this communication software automatically as part of the HIL
setup as a static DSP executable.

Downstream Workflow Automation

To create the FPGA HIL executable, EDA Simulator Link software collects
the following components:

¢ The HDL code generated by Simulink HDL Coder for the DUT

¢ The HDL and UCF code generated by EDA Simulator Link for the HIL
communication channel

EDA Simulator Link then places these components together into an ISE
project and then passes the project to Xilinx ISE. Finally, Xilinx ISE
synthesizes, maps, places and routes, and creates a bitstream for the FPGA.

Design Considerations for FPGA HIL Project
Generation

Keep the following considerations in mind when you design the DUT to be
used in the FPGA HIL workflow:

e Select only VHDL code as target language on HDL Coder Config Params
pane (Verilog not supported)

e Make the DUT the top-level subsystem (not model level)

e Make sure design contains clocked logic (pure combinatorial DUT is not
supported)

¢ Make the DUT single rate

¢ The DUT may—and must—contain only one 8-bit input and one 8-bit
output port (no double, single, or vector data type, other bit width, or
number of ports less than or greater than one)

Workflow for Generating FPGA HIL

Workflow for Generating FPGA HIL

In this section...
“Create Model for FPGA HIL” on page 15-5
“Set Up FPGA Project Configuration Parameters GUI” on page 15-5

“Specify Simulink® HDL Coder Configuration Parameters” on page 15-6
“Specify FPGA HIL Configuration Parameters” on page 15-6

“Generate FPGA Project” on page 15-7

“Load Bitstream” on page 15-8

“Run Simulation” on page 15-8

Create Model for FPGA HIL

Use Simulink to create a model with a subsystem as the DUT. EDA Simulator
Link software supports only a single rate DUT with one 8-bit input and one
8-bit output.

Continue on to “Set Up FPGA Project Configuration Parameters GUI” on
page 15-5.

Set Up FPGA Project Configuration Parameters GUI
In the MATLAB command window, type the following:

> fpgamodelsetup(gcs)
You can replace gcs with the name of any valid model.

This command sets parameters suitable for the FPGA workflow. See
fpgamodelsetup.

Continue on to “Specify Simulink® HDL Coder Configuration Parameters”
on page 15-6.

15-5

15 rrca Hardware-in-the-Loop (HIL)

Specify Simulink HDL Coder Configuration
Parameters

15-6

1 From the model window, open the Configuration Parameters dialog box,
and select the Simulink HDL Coder pane.

2 In the Simulink HDL Coder pane, select language and folder name. Then,

specify the subsystem for FPGA HIL code generation.

Continue on to “Specify FPGA HIL Configuration Parameters” on page 15-6.

Specify FPGA HIL Configuration Parameters

Open or navigate to the EDA Link FPGA Workflow pane, as shown in the
following image.

%, Configuration Parameters: untitled /Configuration (Active)

x|
Select: FPGA Workflow for Xilinx ISE Design Suite =
-~ Selver —FPGA workflow options
Data Import/Expart
+ Optimization Workflow: IFPGA hardware-in-the-oop ﬂ
[I-Diagnostics X -
i--Sample Time Cutput: |FPGA bitstream and processor executable ;I
{--Data Validi
i —FPGA hardware-in-the-oop options
- Type Conversion
pSamecaty Board: [Avnet Spartan-34 DSP DaVind =
- Compatibility
;Medel Referencing —FPGA project settings
-Saving
+Hardware Implementation Mame: |unﬁﬂedjroj
+Model Referencng
El-Simulation Target Folder: [iseproject Browse... |
“Symbols . Target Deviee:
Custom Code
ET-Real Time Workshop Family: ISpartan-SA DSP ;I Device: Ix:35d 1800z ;I Speed: I--1 ;I Package: Ifgﬁ?é ;I
Report
i~ Comments [~ Always generate HOL
Symbals
-Custom Code Generate FPGA HIL |
i~Debug
t-Interface
[E1-HDL Coder
Global Settings
+Test Bench
i--EDA Tool Scripts
~-EDA Link
&
OK I Cancel Help Apply |

1 Select Workflow: FPGA hardware-in-the-1loop.

Workflow for Generating FPGA HIL

2 Select Output: FPGA bitstream and processor executable (EDA
Simulator Link software selects the output type for you automatically).

3 Select Board: Avent Spartan-3A DSP DaVinci (EDA Simulator Link
software selects this automatically for you, as it only supports this one
board as of the current release).

4 Specify project name.
5 Specify project folder.

6 Select Always Generate HDL if you want updated HDL with the project.

Note If you do not select this option, you can use the Simulink HDL Coder
pane to generate code for the model.

Note EDA Simulator Link software makes the target device unavailable
because that device’s value depends on what board you select. The link
software selects that for you automatically.

Continue on to “Generate FPGA Project” on page 15-7.

Generate FPGA Project
Press Generate FPGA HIL button.

This process can take some time, as it involves synthesis and bitstream
creation for the FPGA and the DSP. You can view processing messages in the
MATLAB command window.

If the project specified already exists, the software prompts you to answer
if you want to overwrite the project:

¢ The default value is yes. If you answer yes, EDA Simulator Link software
overwrites the project file with the new data.

¢ If you answer no, FPGA HIL project generation stops.

15-7

15 rrca Hardware-in-the-Loop (HIL)

15-8

Note If there is an existing project you want to overwrite, the best practice is
to manually delete the project folder before generating the project.

When EDA Simulator Link software finishes processing the FPGA HIL
workflow, you can see a new, untitled model. This model contains a new HIL
block where the DUT was previously located. The logic for the communication
channel resides in an S-Function block inside the HIL block.

Caution Do not change any S-Function parameters. These parameters are
set specifically for the current board and HDL code. If you change them,
the FPGA HIL may no longer work.

Continue on to “Load Bitstream” on page 15-8.

Load Bitstream

Using Xilinx tools, load the FPGA bitstream onto the FPGA. File name:
aes_sp3adsp.bit

Continue on to “Run Simulation” on page 15-8.

Run Simulation

There are two approaches to running the simulation, depending on whether
or not you have Code Composer Studio™:

e If you have Code Composer Studio and Embedded IDE LinEM, you can

»

click Simulation > Start or the Start Simulation button u . Simulink
and Embedded IDE Link automatically download the DSP executable, and
the simulation runs.

¢ If you do not have Code Composer Studio and Embedded IDE Link, use
any appropriate tools you do have to load the DSP executable. File name:
soft_channel_hil.out. After you have downloaded the file to the DSP,

Workflow for Generating FPGA HIL

you can select Simulation > Start or press the Start Simulation button

i

After Simulink completes the simulation, you can make further adjustments
to the DUT. (Doing so requires rerunning FPGA HIL project generation.)

You can also save the generated model for future simulations or for sharing
with other developers.

If you do decide to share the generated model, you must send the two
bitstream files, the S-function, and the generated model to the recipient.

15-9

15 rrca Hardware-in-the-Loop (HIL)

15-10

A

Absolute timing mode
defining the timing relationship with
Simulink 7-23
addresses, Internet 6-29
applications
coding for EDA Simulator Link™
software 1-14 2-13
component
coding for EDA Simulator Link™
software 2-2
programming with EDA Simulator
Link™ software 2-2
test bench
coding for EDA Simulator Link™
software 1-2
programming with EDA Simulator
Link™ software 1-2
array data types
conversions of 7-5
VHDL
when used with component function 2-8
when used with test bench 1-8
array indexing
differences between MATLAB and VHDL 7-5
arrays
converting to 7-10
indexing elements of 7-5
of VHDL data types
when used with component function 2-8
when used with test bench 1-8
Auto fill
using in Ports pane
for use with Simulink component
sessions 4-18
for use with Simulink test bench
sessions 3-19
auto-generated memory map with multiple
addresses
in TLM component generation 9-5

auto-generated memory map with single address
in TLM component generation 9-5

BIT data type
conversion of 7-5
converting to 7-10
specified in HDL modules
when used with component function 2-8
when used with test bench 1-8
bit vectors
converting for MATLAB 7-9
converting to 7-10
BIT_VECTOR data type
conversion of 7-5
converting for MATLAB 7-9
converting to 7-10
specified in HDL modules
when used with component function 2-8
when used with test bench 1-8
block latency 7-37
block parameters
setting programmatically
for component session 4-39
for test bench session 3-41
Block Parameters dialog
for HDL Cosimulation block component
sessions 4-17
for HDL Cosimulation block test bench
sessions 3-18
block ports
mapping signals to
for use with Simulink component
sessions 4-18
for use with Simulink test bench
sessions 3-19
blocksets
for creating hardware models 3-2
for EDA applications 3-2

Index-1

Index

breakpoints
setting in MATLAB
for component function sessions 2-30
for test bench sessions 1-36
bypass
HDL Cosimulation block
during component cosimulation 4-34
during test bench cosimulation 3-36

C

callback specification 7-42
callback timing
scheduling for component function
sessions 2-26
scheduling for test bench sessions 1-32
CHARACTER data type
conversion of 7-5
specified in HDL modules
when used with component function 2-8
when used with test bench 1-8
Checking link status
for component function cosimulation 2-29
for test bench cosimulation 1-35
clock modules
generated for FPGA projects 13-4
clocks
driving 7-29
specifying for HDL Cosimulation blocks 7-30
Clocks pane
configuring block clocks with 7-30
column-major numbering 7-5
command and status register
in TLM component generation 9-6
communication
configuring for blocks
and component cosimulation 4-34
and test bench cosimulation 3-36
socket ports for 6-29
communication modes

Index-2

specifying for Simulink links
and test bench cosimulation 3-14 4-13
specifying with hdldaemon function
for component function session 2-16
for test bench session 1-22
Communications Blockset
using for EDA applications 3-2
compilation, VHDL code
using with HDL designs for component
function 2-10
using with HDL designs for test bench 1-10
compiler, VHDL
using with HDL designs for component
function 2-10
using with HDL designs for test bench 1-10
component applications
coding for EDA Simulator Link™ software
overview of 2-2
programming with EDA Simulator Link™
software
overview of 2-2
component function
associating with HDL module 2-23
matlabcp 2-13
programming for HDL verification 1-14
scheduling invocation of 2-25
component function cosimulation
controlling MATLAB
overview of 2-29
component function sessions
monitoring 2-30
restarting 2-37
running 2-30
component functions
adding to MATLAB search path 2-15
coding for HDL visualization 2-13
naming 2-23
scheduling invocation of 2-26
component sessions
stopping 2-38

Index

configuration parameters
pane

Algorithm step function (in ns) 12-15

Auto-Generated Memory Map Type 12-6

Compile with debug flags. 12-34

Create an interrupt request port on the
generated TLM component 12-9

Enable payload buffering 12-10

Enable quantum for loosely-timed
simulation 12-13

Generate testbench 12-23

Generate verbose messages during
testbench execution 12-24

Include a command and status register
in the memory map 12-7

Include a test and set register in the
memory map 12-8

Input buffer triggering mode 12-26

Output buffer triggering mode 12-27

Payload input buffer depth 12-11

Payload output buffer depth 12-12

Quantum for loosely-timed components
(in ns) 12-14

Run-time timing mode 12-25

Single read transaction or the first read
transfer in a burst transaction (in
ns) 12-18

Single write transfer or the first write
transfer in a burst transaction (in
ns) 12-16

Subsequent read transfers in a burst
transaction (in ns) 12-19

Subsequent write transfers in a burst
transaction (in ns) 12-17

SystemC include path 12-30

SystemC library path 12-31

TLM Compilation 12-29

TLM component location in the system
memory map 12-5

TLM Generation 12-4

TLM include path 12-32
TLM Testbench 12-22
User-tag for TLM component
names 12-20
configurations
deciding on for MATLAB 6-26
deciding on for Simulink 6-27
MATLAB
multiple-link 6-26
Simulink
multiple-link 6-27
single-system for MATLAB 6-26
single-system for Simulink 6-27
valid for MATLAB and HDL simulator 6-26
valid for Simulink and HDL simulator 6-27
Connection pane
configuring block communication with
for component cosimulation 4-34
for test bench cosimulation 3-36
connections, link
TCP/TP socket 6-29
continuous signals 7-14
continuous time signals
interfacing with
during component cosimulation 4-4
during test bench cosimulation 3-5
cosimulation
bypassing
during component cosimulation 4-34
during test bench cosimulation 3-36
loading HDL modules for component
session 4-13
loading HDL modules for test bench
session 3-14
logging changes to signal values during 5-2
running Simulink and ModelSim
tutorial 3-67
shutting down Simulink and ModelSim
tutorial 3-70
starting with Simulink

Index-3

Index

for component session 4-44
for test bench session 3-46
cosimulation output ports
specifying
for component cosimulation 4-33
for test bench cosimulation 3-35

D

data types
conversions of 7-5
converting for MATLAB 7-9
converting for the HDL simulator 7-10
HDL port
verifying 7-45
unsupported VHDL
when used with component function 2-8
when used with test bench 1-8
VHDL port
when used with component function 2-8
when used with test bench 1-8
DCM
generated for FPGA projects 13-4
delta time 7-37
deposit
changing signals with
during component cosimulation 4-3
during test bench cosimulation 3-4
for iport parameter 7-42
with force commands
to component function sessions 2-35
to test bench sessions 1-41
direct feedthrough
for eliminating block latency
in component cosimulation 4-32
in test bench cosimulation 3-34
for eliminating block simulation latency 7-37
discrete blocks 7-14
DO files
specifying for HDL Cosimulation blocks

Index-4

for component session 4-37
for test bench session 3-39
double values
as representation of time 1-32 2-26
converting for MATLAB 7-9
converting for the HDL simulator 7-10
dspstartup file
for use with component cosimulation 4-42
for use with test bench cosimulation 3-44
duty cycle 7-30

EDA Simulator Link™ software
block library
using to add HDL to Simulink software
with for component simulation
session 4-4
using to add HDL to Simulink software
with for test bench session 3-5
setting up the HDL simulator for 6-5
enables
driving 7-29
entities
coding for MATLAB verification 1-7
coding for MATLAB visualization 2-7
loading for cosimulation 3-65
sample definition of 1-12
entities or modules
getting port information of 7-42
enumerated data types
conversion of 7-5
converting to 7-10
specified in HDL modules
when used with component function 2-8
when used with test bench 1-8
examples 3-2
Simulink and the HDL simulator 3-52
test bench function 1-15
VCD file generation 5-6

Index

See also Manchester receiver Simulink model

F

falling-edge clocks
creating for HDL Cosimulation blocks 7-30
specifying as scheduling options
for component function sessions 2-26
for test bench sessions 1-32
Falling-edge clocks parameter
specifying block clocks with 7-30
force command
applying simulation stimuli to component
function sessions with 2-35
applying simulation stimuli to test bench
sessions with 1-41
resetting clocks during component
cosimulation with 4-44
resetting clocks during test bench
cosimulation with 3-46
FPGA hardware-in-the-loop
for FPGA simulation 13-7
FPGA project generation
adding clock modules 13-4
DCM 13-4
generated files 13-3
introduction 13-2
overview 13-1
quick start 13-8
workflows for 13-8
FPGA simulation
with FPGA hardware-in-the-loop 13-7
Frame-based processing 6-36
example of 6-37
in cosimulation 6-36
performance improvements gained from 6-36
requirements for use of 6-36
restrictions on use of 6-36
functions
hdlsimmatlab

loading HDL modules for verification
with 1-24
loading HDL modules for visualization
with 2-18
hdlsimulink
loading HDL modules for component
cosimulation with 4-13
loading HDL modules for test bench
cosimulation with 3-14
vsimmatlab
loading HDL modules for verification
with 1-24
loading HDL modules for visualization
with 2-18
vsimulink
loading HDL modules for component
cosimulation with 4-13
loading HDL modules for test bench
cosimulation with 3-14

H

hardware model design
creating in Simulink 3-2
running and testing in Simulink
for component simulation 4-11
for use with test bench cosimulation 3-9
HDL cosimulation block
configuring ports for
for use with Simulink component
sessions 4-18
for use with Simulink test bench
sessions 3-19
opening Block Parameters dialog for
with component sessions 4-17
with test bench sessions 3-18
HDL Cosimulation block
adding to a Simulink model
for component simulation session 4-4
for test bench session 3-5

Index-5

Index

black boxes representing 3-2
bypassing
during component cosimulation 4-34
during test bench cosimulation 3-36
configuring clocks for 7-30
configuring communication for
and component cosimulation 4-34
and test bench cosimulation 3-36
configuring Tcl commands for
for component session 4-37
for test bench session 3-39
design decisions for 3-2
handling of signal values for
during test bench cosimulation 3-44 4-42
scaling simulation time for 7-14
HDL entities
loading for component cosimulation with
Simulink 4-13
loading for test bench cosimulation with
Simulink 3-14
HDL models
adding to Simulink models
for component simulation session 4-4
for test bench session 3-5
compiling
for use with component function 2-10
for use with test bench 1-10
configuring Simulink for
for component cosimulation 4-42
for test bench cosimulation 3-44
debugging
for use with component function 2-10
for use with test bench 1-10
porting 5-2
running in Simulink
for component cosimulation 4-44
for test bench cosimulation 3-46
testing in Simulink 3-46
HDL module
associating with component function 2-23

Index-6

associating with test bench function 1-29
HDL modules
coding for MATLAB verification 1-7
coding for MATLAB visualization 2-7
getting port information of 7-42
loading for verification 1-24
loading for visualization 2-18
naming for use with component functions 2-8
naming for use with test bench 1-8
using port information for 7-45
validating 7-45
verifying port direction modes for 7-45
HDL simulator
handling of signal values for
during test bench cosimulation 3-44 4-42
simulation time for 7-14
starting for use with Simulink
and test bench cosimulation 3-14 4-13
HDL Simulator block
configuration requirements for 6-27
valid configurations for 6-27
HDL simulator commands
force
applying simulation stimuli to component
function sessions with 2-35
applying simulation stimuli to test bench
sessions with 1-41
resetting clocks during component
cosimulation with 4-44
resetting clocks during test bench
cosimulation with 3-46
run
for component function sessions 2-30
for test bench sessions 1-36
HDL simulators
setting up during installation 6-5
starting from MATLAB
for use with component session 2-18
for use with test bench 1-24
hdldaemon function

Index

configuration restrictions for 6-26
starting
for component function session 2-16
for test bench session 1-22
hdlsimmatlab command
loading HDL modules for verification
with 1-24
loading HDL modules for visualization
with 2-18
Host name parameter
specifying block communication with
for component cosimulation 4-34
for test bench cosimulation 3-36
host names
identifying server with 6-29

IN direction mode
specifying for ports in HDL for use with
component function 2-8
specifying for ports in HDL for use with test
bench 1-8
verifying 7-45
INOUT direction mode
specifying for port in HDL for use with
component function 2-8
specifying for port in HDL for use with test
bench 1-8
verifying 7-45
input
specifying for ports in HDL for use with
component function 2-8
See also input ports
specifying for ports in HDL for use with test
bench 1-8
See also input ports
input ports
attaching to signals
during component cosimulation 4-3

during test bench cosimulation 3-4
for HDL model
when using with component function 2-8
when using with test bench 1-8
for MATLAB component function 7-42
for MATLAB test bench function 7-42
for test bench function 7-42
mapping signals to
for use with Simulink component
sessions 4-18
for use with Simulink test bench
sessions 3-19
simulation time for 7-14
int64 values
scheduling for component function
sessions 2-26
scheduling for test bench sessions 1-32
INTEGER data type
conversion of 7-5
converting to 7-10
specified in HDL modules
when used with component function 2-8
when used with test bench 1-8
Internet address 6-29
identifying server with 6-29
interrupt
for TLM component generation 9-14
iport parameter 7-42

K

kill option
shutting down MATLAB server with 1-61

L

latency
block 7-37

launchDiscovery function
starting HDL simulator with

Index-7

Index

for use with component session 2-18
for use with test bench 1-24

M

MATLAB
quitting 1-44
MATLAB component function sessions
controlling
overview 2-29
starting
overview 2-29
MATLAB component functions
defining 7-42
specifying required parameters for 7-42
MATLAB data types
conversion of 7-5
MATLAB functions
coding for HDL verification 1-14
coding for HDL visualization 2-13
defining 7-42
for MATLAB and ModelSim tutorial 1-52
hdldaemon
starting for component function
session 2-16
starting for test bench session 1-22
naming
for component functions 2-23
for test bench functions 1-29
programming for HDL verification 1-14
programming for HDL visualization 2-13
sample of 1-15
specifying required parameters for 7-42
which
for finding component function 2-15
for finding test bench 1-21
MATLAB search path
placing component function on 2-15
placing test bench function on 1-21
MATLAB server

Index-8

checking component session link status
with 2-29
checking test bench link status with 1-35
configuration restrictions for 6-26
configurations for 6-26
identifying in a network configuration 6-29
starting
for component function session 2-16
for test bench session 1-22
starting for MATLAB and ModelSim
tutorial 1-46
MATLAB test bench functions
defining 7-42
specifying required parameters for 7-42
MATLAB test bench sessions
controlling
overview 1-35
starting
overview 1-35
matlabcp command
specifying scheduling options with 2-26
matlabtb command
specifying scheduling options with 1-32
matlabtbeval command
specifying scheduling options with 1-32
memory mapping
in TLM component generation 9-4
models
compiling VHDL
for use with component function 2-10
for use with test bench 1-10
debugging VHDL
for use with component function 2-10
for use with test bench 1-10
for Simulink and ModelSim tutorial 3-55
ModelSim
setting up for MATLAB and ModelSim
tutorial 1-47
setting up for Simulink and ModelSim
tutorial 3-65

Index

ModelSim commands
vcd2wlf 5-2
ModelSim Editor 1-49
modes
communication
for component function session 2-16
for test bench session 1-22
port direction 7-45
module names
specifying paths
for MATLAB component function
sessions 2-20
for MATLAB test bench sessions 1-26
specifying paths in Simulink
for component sessions 4-18
for test bench sessions 3-19
modules
coding for MATLAB verification 1-7
coding for MATLAB visualization 2-7
loading for verification 1-24
loading for visualization 2-18
naming for use with component functions 2-8
naming for use with test bench 1-8
multirate signals
on the HDL Cosimulation block
during component cosimulation 4-4
during test bench cosimulation 3-5

names
for component functions 2-23
for HDL modules for use with component
functions 2-8
for HDL modules for use with test bench 1-8
for test bench functions 1-29
verifying port 7-45
NATURAL data type
conversion of 7-5
converting to 7-10

specified in HDL modules
when used with component function 2-8
when used with test bench 1-8
nclaunch function
starting HDL simulator with
for use with component session 2-18
for use with test bench 1-24
network configuration 6-29
no memory map
in TLM component generation 9-4
numeric data
converting for MATLAB 7-9
converting for the HDL simulator 7-10

o

oport parameter 7-42
OUT direction mode
specifying for ports in HDL for use with
component function 2-8
specifying for ports in HDL for use with test
bench 1-8
verifying 7-45
output ports
for HDL model
when using with component function 2-8
when using with test bench 1-8
for MATLAB component function 7-42
for MATLAB test bench function 7-42
for test bench function 7-42
mapping signals to
for use with Simulink component
sessions 4-18
for use with Simulink test bench
sessions 3-19
simulation time for 7-14

P

parameters

Index-9

Index

required for MATLAB component
functions 7-42
required for MATLAB test bench
functions 7-42
required for test bench functions 7-42
setting programmatically
for component session 4-39
for test bench session 3-41
path specification
for ports/signals and modules
for MATLAB component function
sessions 2-20
for MATLAB test bench sessions 1-26
for ports/signals and modules in Simulink
for component sessions 4-18
for test bench sessions 3-19
phase, clock 7-30
port names
specifying paths
for MATLAB component function
sessions 2-20
for MATLAB test bench sessions 1-26
specifying paths in Simulink
for component sessions 4-18
for test bench sessions 3-19
verifying 7-45
Port number or service parameter
specifying block communication with
for component cosimulation 4-34
for test bench cosimulation 3-36
port numbers 6-29
specifying for MATLAB server
for component function session 2-16
for test bench session 1-22
specifying for the HDL simulator
for component function sessions 2-26
for test bench sessions 1-32
portinfo parameter 7-42
portinfo structure 7-45
ports

Index-10

getting information about 7-42
specifying direction modes for
when using with component function 2-8
when using with test bench 1-8
specifying VHDL data types for
when used with component function 2-8
when used with test bench 1-8
using information about 7-45
verifying data type of 7-45
verifying direction modes for 7-45
Ports pane
configuring block ports with
for use with Simulink component
sessions 4-18
for use with Simulink test bench
sessions 3-19
using Auto fill
for use with Simulink component
sessions 4-18
for use with Simulink test bench
sessions 3-19
ports, block. See block ports
Post- simulation command parameter
specifying block Tcl commands with
for component session 4-37
for test bench session 3-39
postprocessing tools 5-2
Pre-simulation command parameter
specifying block simulation Tcl commands
with
for component session 4-37
for test bench session 3-39
properties
for starting HDL simulator for use with
Simulink
and test bench cosimulation 3-14 4-13
for starting MATLAB server
for component function session 2-16
for test bench session 1-22

Index

Q

Quick start
for FPGA project generation 13-8

race conditions
in HDL component cosimulation 4-48
in HDL test bench simulation 3-50
rate converter
for multirate signals
during component cosimulation 4-4
during test bench cosimulation 3-5
real data
converting for MATLAB 7-9
converting for the HDL simulator 7-10
REAL data type
conversion of 7-5
converting to 7-10
specified in HDL modules
when used with component function 2-8
when used with test bench 1-8
real values, as time
scheduling for component function
sessions 2-26
scheduling for test bench sessions 1-32
relative timing mode
definition of 7-17
operation of 7-17
resets
driving 7-29
resolution limit 7-45
rising-edge clocks
creating for HDL Cosimulation blocks 7-30
specifying as scheduling options
for component function sessions 2-26
for test bench sessions 1-32
Rising-edge clocks parameter
specifying block clocks with 7-30
run command

for component function sessions 2-30
for test bench sessions 1-36

S

sample periods 3-2
See also sample times
sample times 7-37
design decisions for 3-2
handling across simulation domains
during test bench cosimulation 3-44 4-42
specifying for block output ports
and Simulink component
cosimulation 4-18
and Simulink test bench
cosimulation 3-19
Sample-based processing 6-36
scalar data types
conversions of 7-5
VHDL
when used with component function 2-8
when used with test bench 1-8
scheduling options
component sessions 2-25
for component function 2-26
for test bench function 1-32
test bench sessions 1-31
script
HDL simulator setup 6-5
search path
placing component function on 2-15
placing test bench function on 1-21
sensitivity lists
for scheduling component function
sessions 2-26
for scheduling test bench sessions 1-32
server, MATLAB
identifying in a network configuration 6-29
starting for MATLAB and ModelSim
tutorial 1-46

Index-11

Index

starting MATLAB
for component function session 2-16
for test bench session 1-22
set_param
for specifying pre- and post-simulation Tel
commands
for component cosimulation 4-37
for test bench cosimulation 3-39
shared memory communication
as a configuration option for MATLAB 6-26
as a configuration option for Simulink 6-27
for Simulink applications
and test bench cosimulation 3-14 4-13
specifying for HDL Cosimulation blocks
and component cosimulation 4-34
and test bench cosimulation 3-36
specifying with hdldaemon function
for component function session 2-16
for test bench session 1-22
shared memory parameter
specifying block communication with
for component cosimulation 4-34
for test bench cosimulation 3-36
signal data types
specifying
for component cosimulation 4-33
for test bench cosimulation 3-35
signal names
specifying paths
for MATLAB component function
sessions 2-20
for MATLAB test bench sessions 1-26
specifying paths in Simulink
for component sessions 4-18
for test bench sessions 3-19
signal path names
specifying for block clocks 7-30
specifying for block ports
and Simulink component
cosimulation 4-18

Index-12

and Simulink test bench
cosimulation 3-19
Signal Processing Blockset
using for EDA applications 3-2
signals
continuous 7-14
defining ports for
when using with component function 2-8
when using with test bench 1-8
driven by multiple sources
during component cosimulation 4-3
during test bench cosimulation 3-4
exchanging between simulation domains
during test bench cosimulation 3-44 4-42
handling across simulation domains
during test bench cosimulation 3-44 4-42
how Simulink drives
during component cosimulation 4-3
during test bench cosimulation 3-4
logging changes to 5-2
logging changes to values of 5-2
mapping to block ports
for use with Simulink component
sessions 4-18
for use with Simulink test bench
sessions 3-19
multirate
during component cosimulation 4-4
during test bench cosimulation 3-5
read/write access
required during component
cosimulation 4-3
required during test bench
cosimulation 3-4
signed data 7-9
SIGNED data type 7-10
simulation analysis 5-2
simulation time 7-42
guidelines for 7-14
representation of 7-14

Index

scaling of 7-14
simulations
comparing results of 5-2
ending 1-44
loading for MATLAB and ModelSim
tutorial 1-54
logging changes to signal values during 5-2
quitting 1-44
running for MATLAB and ModelSim
tutorial 1-56
running Simulink and ModelSim
tutorial 3-67
shutting down for MATLAB and ModelSim
tutorial 1-61
shutting down Simulink and ModelSim
tutorial 3-70
simulator communication
options
for component cosimulation 4-34
for test bench cosimulation 3-36
simulator resolution limit 7-45
simulators
handling of signal values between
during test bench cosimulation 3-44 4-42
HDL
starting from MATLAB for use with
component session 2-18
starting from MATLAB for use with test
bench 1-24
Simulink
configuration restrictions for 6-27
configuring for HDL models and component
cosimulation 4-42
configuring for HDL models and test bench
cosimulation 3-44
creating hardware model designs with 3-2
driving cosimulation signals with
during component cosimulation 4-3
during test bench cosimulation 3-4
running and testing hardware model in

for component simulation 4-11
for use with test bench cosimulation 3-9
setting up ModelSim for use with 3-65
simulation time for 7-14
starting the HDL simulator for test bench
use with 3-14 4-13
Simulink Fixed Point
using for EDA applications 3-2
Simulink models
adding HDL models to
for component simulation session 4-4
for test bench session 3-5
for Simulink and ModelSim tutorial 3-55
sink device
specifying block ports for
for use with Simulink component
sessions 4-18
for use with Simulink test bench
sessions 3-19
specifying clocks for 7-30
specifying communication for
and component cosimulation 4-34
and test bench cosimulation 3-36
specifying Tecl commands for
for component session 4-37
for test bench session 3-39
socket port numbers 6-29
as a networking requirement 6-29
specifying for HDL Cosimulation blocks
and component cosimulation 4-34
and test bench cosimulation 3-36
socket property
specifying with hdldaemon function
for component function session 2-16
for test bench session 1-22
source device
specifying block ports for
for use with Simulink component
sessions 4-18

Index-13

Index

for use with Simulink test bench
sessions 3-19
specifying clocks for 7-30
specifying communication for
and component cosimulation 4-34
and test bench cosimulation 3-36
specifying Tecl commands for
for component session 4-37
for test bench session 3-39
standard logic data 7-9
standard logic vectors
converting for MATLAB 7-9
converting for the HDL simulator 7-10
start time 7-14
STD_LOGIC data type
conversion of 7-5
converting to 7-10
specified in HDL modules
when used with component function
when used with test bench 1-8
STD_LOGIC_VECTOR data type
conversion of 7-5
converting for MATLAB 7-9
converting to 7-10
specified in HDL modules
when used with component function
when used with test bench 1-8
STD_ULOGIC data type
conversion of 7-5
converting to 7-10
specified in HDL modules
when used with component function
when used with test bench 1-8
STD_ULOGIC_VECTOR data type
conversion of 7-5
converting for MATLAB 7-9
converting to 7-10
specified in HDL modules
when used with component function
when used with test bench 1-8

Index-14

2-8

2-8

2-8

2-8

stimuli, block internal 7-30
stop time 7-14
strings, time value
scheduling for component function
sessions 2-26
scheduling for test bench sessions 1-32
subtypes, VHDL
when used with component function 2-8
when used with test bench 1-8

T

Tcl commands
configuring with HDL Cosimulation block for
component session 4-37
configuring with HDL Cosimulation block for
test bench session 3-39
using set_param for
for component cosimulation 4-37
for test bench cosimulation 3-39
TCP/IP networking protocol
as a networking requirement 6-29
TCP/TP socket communication
as a communication option for MATLAB 6-26
as a communication option for Simulink 6-27
specifying with hdldaemon function
for component function session 2-16
for test bench session 1-22
TCP/TP socket ports 6-29
specifying for HDL Cosimulation blocks
and component cosimulation 4-34
and test bench cosimulation 3-36
test and set register
for TLM component generation 9-15
test bench applications
coding for EDA Simulator Link™ software
overview of 1-2
programming with EDA Simulator Link™
software
overview of 1-2

Index

test bench cosimulation
controlling MATLAB
overview of 1-35
test bench function
associating with HDL module 1-29
matlabtb 1-14
matlabtbeval 1-14
scheduling invocation of 1-31
test bench functions
adding to MATLAB search path 1-21
coding for HDL verification 1-14
defining 7-42
for MATLAB and ModelSim tutorial 1-52
naming 1-29
programming for HDL verification 1-14
sample of 1-15
scheduling invocation of 1-32
specifying required parameters for 7-42
test bench sessions
logging changes to signal values during 5-2
monitoring 1-36
restarting 1-43
running 1-36
stopping 1-44
The HDL simulator is running on this computer
parameter
specifying block communication with
for component cosimulation 4-34
for test bench cosimulation 3-36
time 7-14
callback 7-42
delta 7-37
simulation 7-42
guidelines for 7-14
representation of 7-14
See also time values
TIME data type
conversion of 7-5
converting to 7-10
specified in HDL modules

when used with component function 2-8
when used with test bench 1-8
time property
setting return time type with
for component function session 2-16
for test bench session 1-22
time values
specifying as scheduling options
for component function sessions 2-26
for test bench sessions 1-32
specifying with hdldaemon function
for component function session 2-16
for test bench session 1-22
timing errors 7-14
timing mode
absolute
for component cosimulation with
Simulink 4-33
for test bench cosimulation with
Simulink 3-35
configuring for component cosimulation 4-33
configuring for test bench cosimulation 3-35
relative
for component cosimulation with
Simulink 4-33
for test bench cosimulation with
Simulink 3-35
TLM 9-6
tnext parameter 7-42
controlling callback timing with
for component function sessions 2-26
for test bench sessions 1-32
specifying as scheduling options
for component function sessions 2-26
for test bench sessions 1-32
time representations for
for component function sessions 2-26
for test bench sessions 1-32
tnow parameter 7-42
tools, postprocessing 5-2

Index-15

Index

tscale parameter 7-45

tutorial files 1-46

tutorials
Simulink and the HDL simulator 3-52
VCD file generation 5-6

V)

unsigned data 7-9
UNSIGNED data type 7-10
unsupported data types
specified in HDL modules
when used with component function 2-8
when used with test bench 1-8
User constraint file
for multicycle paths 13-5

v

value change dump (VCD) files 5-2
See also VCD files
VCD files
example of generating 5-6
using 5-2
vcd2wlf command 5-2
vectors
converting for MATLAB 7-9
converting to 7-10
verification
coding test bench functions for 1-14
verification sessions
logging changes to signal values during 5-2
monitoring 1-36
running 1-36
stopping 1-44
Verilog data types
conversion of 7-5
Verilog modules
coding for MATLAB verification 1-7
coding for MATLAB visualization 2-7

Index-16

VHDL code
compiling for MATLAB and ModelSim
tutorial 1-51
compiling for Simulink and ModelSim
tutorial 3-54
for MATLAB and ModelSim tutorial 1-49
for Simulink and ModelSim tutorial 3-53
VHDL data types
conversion of 7-5
VHDL entities
coding for MATLAB verification 1-7
coding for MATLAB visualization 2-7
for Simulink and ModelSim tutorial
loading for cosimulation 3-65
sample definition of 1-12
verifying port direction modes for 7-45
VHDL models
compiling
for use with component function 2-10
for use with test bench 1-10
debugging
for use with component function 2-10
for use with test bench 1-10
visualization
coding component functions for 2-13
coding functions for 1-14
vsim function
starting ModelSim with
for use with component session 2-18
for use with test bench 1-24
vsimmatlab command
loading HDL modules for verification
with 1-24
loading HDL modules for visualization
with 2-18

w

Wave Log Format (WLF) files 5-2
waveform files 5-2

Index

which function
for component function 2-15
for test bench function 1-21
WLF files 5-2
workflow
HDL simulator with MATLAB 1-4
HDL simulator with MATLAB component
function 2-4

ModelSim HDL simulator with Simulink 3-6

workflows
for FPGA project generation 13-8

Z
zero-order hold 7-14

Index-17

	toc
	Cosimulating HDL with MATLAB and Simulink
	Simulating an HDL Component in a MATLAB Test Bench Environment
	Using MATLAB as a Test Bench
	Overview to MATLAB Test Bench Functions
	Workflow for Simulating an HDL Component with a MATLAB Test Benc

	Code HDL Modules for Verification Using MATLAB
	Overview to Coding HDL Modules for Verification with MATLAB
	Choosing an HDL Module Name for Use with a MATLAB Test Bench
	Specifying Port Direction Modes in HDL Module for Use with Test
	Specifying Port Data Types in HDL Modules for Use with Test Benc
	Port Data Types for VHDL Entities
	Port Data Types for Verilog Modules

	Compiling and Elaborating the HDL Design for Use with Test Bench
	Compilation for ModelSim
	Compilation for Incisive
	Compilation for Discovery
	Sample VHDL Entity Definition

	Code an EDA Simulator Link MATLAB Test Bench Function
	Process for Coding MATLAB EDA Simulator Link Functions
	Syntax of a Test Bench Function
	Sample MATLAB Test Bench Function
	MATLAB Function Example: manchester_decoder.m

	Place Test Bench Function on MATLAB Search Path
	Use MATLAB which Function to Find Test Bench
	Add Test Bench Function to MATLAB Search Path

	Start Connection to HDL Simulator for Test Bench Session
	Start MATLAB Server for Test Bench Session
	Example of Starting MATLAB Server for Test Bench Session

	Launch HDL Simulator for Use with MATLAB Test Bench
	Launching the HDL Simulator for Test Bench Session
	Loading an HDL Design for Verification

	Invoke matlabtb to Bind MATLAB Test Bench Function Calls
	Invoking the MATLAB Test Bench Command matlabtb
	Specifying HDL Signal/Port and Module Paths for MATLAB Test Benc
	Examples for ModelSim and Incisive Users
	Examples for Discovery Users

	Binding the HDL Module Component to the MATLAB Test Bench Functi
	Example of Binding Test Bench and Component Function Calls

	Schedule Options for a Test Bench Session
	About Scheduling Options for Test Bench Sessions
	Scheduling Test Bench Session Using matlabtb Arguments
	Scheduling Test Bench Functions Using the tnext Parameter
	Examples of Scheduling with tnext

	Run MATLAB Test Bench Simulation
	Process for Running MATLAB Test Bench Cosimulation
	Checking the MATLAB Server’s Link Status for Test Bench Cosimula
	Running a Test Bench Cosimulation
	Cosimulation with MATLAB Using the HDL Simulator GUI
	Cosimulation with MATLAB Using the Command Line Interface (CLI)
	Specifying CLI mode with nclaunch (for use with Cadence Incisive
	Specifying CLI mode with vsim (for use with Mentor Graphics Mode
	Specifying CLI mode with launchDiscovery (for use with Synopsys
	Cosimulation with MATLAB Using Batch Mode
	Specifying Batch mode with nclaunch (for use with Cadence Incisi
	Specifying Batch mode with vsim (for use with Mentor Graphics Mo
	Specifying Batch mode with launchDiscovery (for use with Synopsy

	Applying Stimuli to Test Bench Session with the HDL Simulator fo
	Incisive Users: Using HDL to Code Clock Signals Instead of the f

	Restarting a Test Bench Simulation

	Stop Test Bench Simulation
	Tutorial – Running a Sample ModelSim and MATLAB Test Bench Sessi
	Tutorial Overview
	Setting Up Tutorial Files
	Starting the MATLAB Server
	Setting Up the ModelSim Simulator
	Developing the VHDL Code
	Compiling the VHDL File
	Developing the MATLAB Function
	Loading the Simulation
	Running the Simulation
	Running the Simulation for the First Time
	Rerunning the Simulation

	Shutting Down the Simulation

	Replacing an HDL Component with a MATLAB Component Function
	Overview to Using a MATLAB Function as a Component
	How MATLAB and the HDL Simulator Communicate During a Component
	Workflow for Creating a MATLAB Component Function for Use with t

	Code HDL Modules for Visualization Using MATLAB
	Overview to Coding HDL Modules for Visualization with MATLAB
	Choosing an HDL Module Name for Use with a MATLAB Component Func
	Specifying Port Direction Modes in HDL Module for Use with Compo
	Specifying Port Data Types in HDL Modules for Use with Component
	Port Data Types for VHDL Entities
	Port Data Types for Verilog Modules

	Compiling and Elaborating the HDL Design for Use with Component
	Compilation for ModelSim
	Compilation for Incisive
	Compilation for Discovery

	Create an EDA Simulator Link MATLAB Component Function
	Overview to Coding an EDA Simulator Link Component Function
	Syntax of a Component Function

	Place Component Function on MATLAB Search Path
	Use MATLAB which Function to Find Component Function
	Add Component Function to MATLAB Search Path

	Start Connection to HDL Simulator for Component Function Session
	Start MATLAB Server for Component Function Session
	Example of Starting MATLAB Server for Component Function Session

	Launch HDL Simulator for Use with MATLAB Component Session
	Launching the HDL Simulator for Component Session
	Loading an HDL Design for Visualization

	Invoke matlabcp to Bind MATLAB Component Function Calls
	Invoking the MATLAB Component Function Command matlabcp
	Specifying HDL Signal/Port and Module Paths for MATLAB Component
	Examples for ModelSim and Incisive Users
	Examples for Discovery Users

	Binding the HDL Module Component to the MATLAB Component Functio
	Example of Binding Test Bench and Component Function Calls

	Schedule Options for a Component Session
	About Scheduling Options for Component Sessions
	Scheduling Component Session Using matlabcp Arguments
	Scheduling Component Functions Using the tnext Parameter
	Examples of Scheduling with tnext

	Run MATLAB Component Function Simulation
	Process for Running MATLAB Component Function Cosimulation
	Checking the MATLAB Server’s Link Status for Component Cosimulat
	Running a Component Function Cosimulation
	Cosimulation with MATLAB Using the HDL Simulator GUI
	Cosimulation with MATLAB Using the Command Line Interface (CLI)
	Specifying CLI mode with nclaunch (for use with Cadence Incisive
	Specifying CLI mode with vsim (for use with Mentor Graphics Mode
	Specifying CLI mode with launchDiscovery (for use with Synopsys
	Cosimulation with MATLAB Using Batch Mode
	Specifying Batch mode with nclaunch (for use with Cadence Incisi
	Specifying Batch mode with vsim (for use with Mentor Graphics Mo
	Specifying Batch mode with launchDiscovery (for use with Synopsy

	Applying Stimuli to Component Function with the HDL Simulator fo
	Incisive Users: Using HDL to Code Clock Signals Instead of the f

	Restarting a Component Simulation

	Stop Component Simulation

	Simulating an HDL Component in a Simulink Test Bench Environment
	Overview to Using Simulink as a Test Bench
	Understanding How the HDL Simulator and Simulink Software Commun
	Understanding How Simulink Drives Cosimulation Signals
	Handling Multirate Signals During Test Bench Cosimulation
	Interfacing with Continuous Time Signals

	HDL Cosimulation Block Features for Test Bench Simulation
	Workflow for Simulating an HDL Component in a Simulink Test Benc

	Create a Simulink Model for Test Bench Cosimulation with the HDL
	Creating Your Simulink Model
	Running Test Bench Hardware Model in Simulink
	Adding a Value Change Dump (VCD) File (Optional)

	Code an HDL Component for Use with Simulink Test Bench Applicati
	Overview to Coding HDL Components for Simulink Test Bench Sessio
	Specifying Port Direction Modes in the HDL Component for Test Be
	Specifying Port Data Types in the HDL Component for Test Bench U
	Port Data Types for VHDL Entities

	Compiling and Elaborating the HDL Design for Test Bench Use

	Launch HDL Simulator for Test Bench Cosimulation with Simulink
	Starting the HDL Simulator from MATLAB
	Loading an Instance of an HDL Module for Test Bench Cosimulation
	Example of loading HDL Module instance — Incisive users
	Example of loading HDL Module instance — ModelSim users
	Example of loading HDL Module instance — Discovery users

	Add the HDL Cosimulation Block to the Simulink Test Bench Model
	Insert HDL Cosimulation Block
	Connect Block Ports

	Define the HDL Cosimulation Block Interface for Test Bench Cosim
	Accessing the HDL Cosimulation Block Interface
	Mapping HDL Signals to Block Ports
	Specifying HDL Signal/Port and Module Paths for Cosimulation
	Obtaining Signal Information Automatically from the HDL Simulato
	Entering Signal Information Manually
	Controlling Output Port Directly by Value of Input Port

	Specifying the Signal Data Types
	Configuring the Simulink and HDL Simulator Timing Relationship
	Defining the Simulink and HDL Simulator Timing Relationship

	Configuring the Communication Link in the HDL Cosimulation Block
	Specifying Pre- and Post-Simulation Tcl Commands with HDL Cosimu
	ModelSim DO Files
	Programmatically Controlling the Block Parameters
	Example: Scripting the Value of the Socket Number for HDL Simula

	Run a Test Bench Cosimulation Session
	Setting Simulink Software Configuration Parameters
	Determining an Available Socket Port Number
	Checking the Connection Status
	Running and Testing a Test Bench Cosimulation Model
	Cosimulation Using the Simulink and HDL Simulator GUIs
	Cosimulation with Simulink Using the Command Line Interface (CLI
	Specifying CLI mode with nclaunch (for use with Cadence Incisive
	Specifying CLI mode with vsim (for use with Mentor Graphics Mode
	Specifying CLI mode with launchDiscovery (for use with Synopsys
	Cosimulation with Simulink Using Batch Mode
	Specifying Batch mode with nclaunch (for use with Cadence Incisi
	Specifying Batch mode with vsim (for use with Mentor Graphics Mo
	Specifying Batch mode with launchDiscovery (for use with Synopsy
	Testing the Cosimulation

	Avoiding Race Conditions in HDL Simulation with Test Bench Cosim

	Tutorial — Verifying an HDL Model Using Simulink, the HDL Simula
	Tutorial Overview
	Using the invertercmds.m File

	Developing the VHDL Code
	Compiling the VHDL File
	Creating the Simulink Model
	Setting Up ModelSim for Use with Simulink
	Loading Instances of the VHDL Entity for Cosimulation with Simul
	Running the Simulation
	Shutting Down the Simulation

	Replacing an HDL Component with a Simulink Algorithm
	Overview to Component Simulation with Simulink
	Understanding How the HDL Simulator and Simulink Software Commun
	Understanding How Simulink Drives Cosimulation Signals
	Handling Multirate Signals During Component Cosimulation
	Interfacing with Continuous Time Signals

	HDL Cosimulation Block Features for Component Simulation
	Workflow for Using Simulink as HDL Component

	Code an HDL Component for Use with Simulink Applications
	Overview to Coding HDL Modules for Simulink Component Simulation
	Specifying Port Direction Modes in the HDL Module for Component
	Specifying Port Data Types in the HDL Module for Component Simul
	Port Data Types for VHDL Entities

	Compiling and Elaborating the HDL Design for Component Simulatio

	Create Simulink Model for Component Cosimulation with the HDL Si
	Creating the Simulink Model for Component Cosimulation
	Running and Testing a Component Hardware Model in Simulink
	Adding a Value Change Dump (VCD) File to Component Model (Option

	Launch HDL Simulator for Component Cosimulation with Simulink
	Starting the HDL Simulator from MATLAB
	Loading an Instance of an HDL Module for Component Cosimulation
	Example of loading HDL Module instance — Incisive users
	Example of loading HDL Module instance — ModelSim users
	Example of loading HDL Module instance — Discovery users

	Add the HDL Cosimulation Block to the Simulink Component Model
	Insert HDL Cosimulation Block
	Connect Block Ports

	Define the HDL Cosimulation Block Interface for Component Simula
	Accessing the HDL Cosimulation Block Interface
	Mapping HDL Signals to Block Ports
	Specifying HDL Signal/Port and Module Paths for Cosimulation
	Obtaining Signal Information Automatically from the HDL Simulato
	Entering Signal Information Manually
	Controlling Output Port Directly by Value of Input Port

	Specifying the Signal Data Types
	Configuring the Simulink and HDL Simulator Timing Relationship
	Defining the Simulink and HDL Simulator Timing Relationship

	Configuring the Communication Link in the HDL Cosimulation Block
	Specifying Pre- and Post-Simulation Tcl Commands with HDL Cosimu
	ModelSim DO Files
	Programmatically Controlling the Block Parameters
	Example: Scripting the Value of the Socket Number for HDL Simula

	Run a Component Cosimulation Session
	Setting Simulink Software Configuration Parameters
	Determining an Available Socket Port Number
	Checking the Connection Status
	Running and Testing a Component Cosimulation Model
	Cosimulation Using the Simulink and HDL Simulator GUIs
	Cosimulation with Simulink Using the Command Line Interface (CLI
	Specifying CLI mode with nclaunch (for use with Cadence Incisive
	Specifying CLI mode with vsim (for use with Mentor Graphics Mode
	Specifying CLI mode with launchDiscovery (for use with Synopsys
	Cosimulation with Simulink Using Batch Mode
	Specifying Batch mode with nclaunch (for use with Cadence Incisi
	Specifying Batch mode with vsim (for use with Mentor Graphics Mo
	Specifying Batch mode with launchDiscovery (for use with Synopsy
	Testing the Cosimulation

	Avoiding Race Conditions in HDL Simulation with Component Cosimu

	Recording Simulink Signal State Transitions for Post-Processing
	Adding a Value Change Dump (VCD) File
	Introduction to the EDA Simulator Link To VCD File Block
	Using the To VCD File Block

	To VCD File Block Tutorial
	Tutorial: Overview
	Tutorial: Instructions

	Additional Deployment Options
	Adding Questa ADMS Support
	Adding Libraries for Questa ADMS Support
	Linking MATLAB or Simulink Software to ModelSim in Questa ADMS
	Starting Questa ADMS for Use with EDA Simulator Link Software
	Using Tcl Test Bench Commands with Questa ADMS
	Constraints

	Diagnosing and Customizing Your Setup for Use with the HDL Simul
	Overview to the EDA Simulator Link Configuration and Diagnostic
	Using the Configuration and Diagnostic Script for UNIX/Linux
	Running the Configuration and Diagnostic Script for ModelSim (sy
	Running the Configuration and Diagnostic Script for Cadence Inci
	Using the Configuration and Diagnostic Script with Windows

	Performing Cross-Network Cosimulation
	Why Perform Cross-Network Cosimulation?
	Preparing for Cross-Network Cosimulation (MATLAB or Simulink)
	ModelSim Users
	Incisive Users
	Discovery Users
	Performing Cross-Network Cosimulation with the HDL Simulator and
	ModelSim Users
	Incisive Users
	Discovery Users
	Performing Cross-Network Cosimulation with the HDL Simulator and
	ModelSim Users
	Incisive Users
	Discovery Users

	Establishing EDA Simulator Link Machine Configuration Requiremen
	Valid Configurations For Using the EDA Simulator Link Software w
	Valid Configurations For Using the EDA Simulator Link Software w

	Specifying TCP/IP Socket Communication
	Communication Modes and Socket Ports
	Choosing TCP/IP Socket Ports
	Specifying TCP/IP Values
	TCP/IP Services

	Improving Simulation Speed
	Obtaining Baseline Performance Numbers
	Analyzing Simulation Performance
	Cosimulating Frame-Based Signals with Simulink
	Overview to Cosimulation with Frame-Based Signals
	Using Frame-Based Processing
	Frame-Based Processing Requirements and Restrictions
	Frame-Based Cosimulation Example

	Advanced Operational Topics
	Avoiding Race Conditions in HDL Simulators
	Overview to Avoiding Race Conditions
	Potential Race Conditions in Simulink Link Sessions
	Potential Race Conditions in MATLAB Link Sessions
	Further Reading

	Performing Data Type Conversions
	Converting HDL Data to Send to MATLAB
	Array Indexing Differences Between MATLAB and HDL
	Converting Data for Manipulation
	Examples

	Converting Data for Return to the HDL Simulator

	Understanding the Representation of Simulation Time
	Overview to the Representation of Simulation Time
	Defining the Simulink and HDL Simulator Timing Relationship
	Setting the Timing Mode with EDA Simulator Link
	Relative Timing Mode
	Operation of Relative Timing Mode
	Relative Timing Mode Example
	For Use with ModelSim
	For Use with Incisive
	For Use with Discovery

	Absolute Timing Mode
	Operation of Absolute Timing Mode
	Absolute Timing Mode Example

	Timing Mode Usage Considerations
	Timing Mode Usage Restrictions
	Non-Integer Time Periods

	Setting HDL Cosimulation Block Port Sample Times

	Driving Clocks, Resets, and Enables
	Options for Driving Clocks, Resets, and Enables
	Adding Signals Using Simulink Blocks
	Creating Optional Clocks with the Clocks Pane of the HDL Cosimul
	Driving Signals by Adding Force commands
	Examples: force Command entered in HDL Cosimulation block Tcl Pa
	Examples: force Command used with EDA Simulator Link HDL Simulat

	Eliminating Block Simulation Latency
	Applying Direct Feedthrough to Eliminate Block Simulation Latenc
	How to Apply Direct Feedthrough
	Example of Applying Direct Feedthrough

	Defining EDA Simulator Link MATLAB Functions and Function Parame
	MATLAB Function Syntax and Function Argument Definitions
	Oscfilter Function Example
	Gaining Access to and Applying Port Information

	Exporting Simulink Algorithms to SystemC TLM 2.0 Components
	Overview to TLM Component Generation
	How TLM Component Generation Works
	TLM Component Generation
	How EDA Simulator Link Software Generates a TLM Component

	Setting TLM Component Generation Configuration Parameters
	User Workflow for TLM Component Generation
	Basic Workflow Steps
	Select System Target File to Activate TLM Component Generation O
	Select Features for Generated TLM Component
	Select Options for Associated Test Bench
	Specify Attributes for Generated makefile
	Generate TLM Component
	Verify the Generated TLM Component

	Selecting Features for the Generated TLM Component
	Overview of Component Features
	Memory Mapping
	No Memory Map
	Automatically Generated Memory Map with Single Address
	Automatically Generated Memory Map with Individual Addresses
	Command and Status Register
	Write-Only Bits
	Read-and-Write Bits
	Read-Only Bits
	Register Definition

	Interrupt
	Test and Set Register
	The Quantum
	Buffering
	TLM Component Timing Values
	TLM Component Naming and Packaging

	Creating and Applying a Test Bench for the Generated TLM Compone
	Testing TLM Components
	TLM Component Test Bench Overview
	TLM Component Compilation
	Automatic Verification of the Generated Component
	Report Generation
	Working with Configurations
	Considerations When Creating a TLM Component Test Bench

	TLM Component Test Bench Generation Options
	Verbose Messaging
	Run-Time Timing Mode
	Input and Output Buffer Triggering Modes
	Input Buffer Triggering Mode
	Output Buffer Triggering Mode

	Verify TLM Component

	Using TLM Components in a SystemC Environment
	TLM Component Compiler Options
	About the TLM Component Compiler Options
	SystemC Include Path
	SystemC Library Path
	TLM Include Path
	Compile with Debug Flags

	Using the Generated TLM Component Files
	How to Identify Generated Files
	Create Static Library with the TLM Component
	Create Standalone Executable with the TLM Component and Test Ben

	Configuration Parameters for TLM Generator Target
	TLM Generation Pane
	TLM Component Generation Overview
	Memory Map Type
	Settings
	Dependencies
	Command-Line Information
	See Also

	Auto-Generated Memory Map Type
	Settings
	Dependencies
	Command-Line Information
	See Also

	Include a command and status register in the memory map
	Settings
	Dependencies
	Command-Line Information
	See Also

	Include a test and set register in the memory map
	Settings
	Dependencies
	Command-Line Information
	See Also

	Create an interrupt request port on the generated TLM component
	Settings
	Command-Line Information
	See Also

	Enable payload buffering
	Settings
	Dependencies
	Command-Line Information
	See Also

	Payload input buffer depth
	Settings
	Dependencies
	Command-Line Information
	See Also

	Payload output buffer depth
	Settings
	Dependencies
	Command-Line Information
	See Also

	Enable quantum for loosely-timed simulation
	Settings
	Dependencies
	Command-Line Information
	See Also

	Quantum for loosely-timed components (ns)
	Settings
	Dependencies
	Command-Line Information
	See Also

	Algorithm step function (ns)
	Settings
	Command-Line Information
	See Also

	Single write transfer or the first write transfer in a burst tra
	Settings
	Command-Line Information
	See Also

	Subsequent write transfers in a burst transaction (ns)
	Settings
	Command-Line Information
	See Also

	Single read transaction or the first read transfer in a burst tr
	Settings
	Command-Line Information
	See Also

	Subsequent read transfers in a burst transaction (in ns)
	Settings
	Command-Line Information
	See Also

	User-tag for TLM component names
	Settings
	Command-Line Information
	See Also

	TLM Testbench Pane
	TLM Component Testbench Pane Overview
	Generate testbench
	Settings
	Dependencies
	Command-Line Information
	See Also

	Generate verbose messages during testbench execution
	Settings
	Dependencies
	Command-Line Information
	See Also

	Run-time timing mode
	Settings
	Dependencies
	Command-Line Information
	See Also

	Input buffer triggering mode
	Settings
	Dependencies
	Command-Line Information
	See Also

	Output buffer triggering mode
	Settings
	Dependencies
	Command-Line Information
	See Also

	TLM Compilation Pane
	TLM Component Compilation Overview
	SystemC include path
	Settings
	Command-Line Information
	TLM Component Compiler Options

	SystemC library path
	Settings
	Command-Line Information
	See Also

	TLM include path
	Settings
	Command-Line Information
	See Also

	Compile with debug flags
	Settings
	Command-Line Information
	See Also

	Creating and Managing Xilinx Projects for FPGA Development
	FPGA Project Generation Overview
	EDA Simulator Link FPGA Project Generation Overview
	Introduction to EDA Simulator Link FPGA Project Generation
	About Xilinx ISE Support

	Generated Project Files
	Creating a New Project
	Adding New Files to an Existing Project
	Updating an Existing Project

	Clock Modules
	DCM Design Rules

	User Constraint Files (UCF) for Multicycle Paths
	Using the Generated UCF File
	Example

	FPGA Hardware-in-the-Loop (HIL)
	For More Information
	Quick Start
	Workflows Described in This Documentation

	FPGA Project Development
	Create New FPGA Project
	Workflow for Creating a New FPGA Project
	Create New or Open Existing Model
	Set Up MATLAB to Use Xilinx ISE (New Project)
	Set Up FPGA Project Configuration Parameters for New Project
	Set Project Generation Settings with EDA Link Configuration Para
	Settings in the Simulink HDL Coder Pane
	Settings in the EDA Link FPGA Workflow Pane

	Generate FPGA Project
	Generate FPGA Project via the GUI
	Generate FPGA Project via Command Line

	Add Generated Files to Existing FPGA Project
	Workflow for Adding Generated Files with Existing FPGA Project
	Create New or Open Existing Model for Adding to Project
	Set Up MATLAB to Use Xilinx ISE (Add to Project)
	Set Up FPGA Workflow Configuration Parameters (Add to Project)
	Open EDA Link FPGA Workflow Pane (Add to Project)
	Specify FPGA Project Settings with EDA Link Configuration Parame
	Specify Clock Module (Add to Project)
	Generate HDL Code for Simulink Model (Add to Project)
	Get Current Settings from ISE Project (Add to Project)

	Add Generated Files to Project with Associate Project

	Update Generated Files for Associated FPGA Project
	Workflow for Updating Generated Files
	Open EDA Link FPGA Workflow Pane
	Specify FPGA Project Settings with EDA Link Configuration Parame
	Specify Clock Module (Update Project)
	Generate HDL Code for Simulink Model (Update Project)
	Get Current Settings from ISE Project (Update Project)

	Update FPGA Project

	Remove Project Association
	Workflow for Removing Project Association
	When to Remove Project Association

	Generate Tcl Script for Project Generation
	When to Use Generated Tcl Scripts
	Workflow for Tcl Script Generation

	FPGA Hardware-in-the-Loop (HIL)
	Introduction to FPGA Hardware-in-the-Loop (HIL)
	Overview of FPGA Hardware-in-the-Loop (HIL) Functionality
	Simulink Emulation
	Communication Channel
	Downstream Workflow Automation
	Design Considerations for FPGA HIL Project Generation

	Workflow for Generating FPGA HIL
	Create Model for FPGA HIL
	Set Up FPGA Project Configuration Parameters GUI
	Specify Simulink HDL Coder Configuration Parameters
	Specify FPGA HIL Configuration Parameters
	Generate FPGA Project
	Load Bitstream
	Run Simulation

	Index

	tables
	VHDL Example Port Definitions
	VHDL-to-MATLAB Data Type Conversions
	Verilog-to-MATLAB Data Type Conversions
	Required Data Conversions
	VHDL Conversions for the HDL Simulator
	Verilog Conversions for the HDL Simulator
	HDL Port Information

